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Abstract— More than ever, people spend the workday seated
in front of a computer, which contributes to health issues caused
by excess sedentary behavior. While breaking up long periods of
sitting can alleviate these issues, no scalable interventions have
had long-term success in motivating activity breaks at work. We
believe that socially assistive robotics (SAR), which combines
the scalability of e-health interventions with the motivational
social ability of a companion or coach, may offer a solution for
changing sedentary habits. To begin this work, we designed
a SAR system and conducted a within-subjects study with
N = 19 participants to compare their experiences taking breaks
using the SAR system versus an alarm-like device for one day
each in participants’ normal workplaces. Results indicate that
both systems had similar effects on sedentary behavior, but
the SAR system led to greater feelings of pleasure, enjoyment,
and engagement. Interviews yielded design recommendations
for future systems. We find that SAR systems hold promise for
further investigations of aiding healthy habit formation in work
settings.

I. INTRODUCTION

As computer use becomes more central to work in many
fields, workers face increased risks of health challenges
including heart disease [1], diabetes [2], and eyestrain [3],
due to prolonged periods of sitting and looking at a screen.
These individuals can benefit from taking breaks [4], standing
up [5], and moving around [6], but there is no universally
effective method for encouraging these behaviors in the
workplace.

Previous work on reducing workplace sedentary behavior
has shown that relatively simple e-health interventions, such
as alarm-style reminders from phones, can significantly im-
prove activity levels [5]–[7]. However, few interventions have
shown sustained success, and the most successful techniques
often incorporate expensive or non-scalable methods, such
as human coaching and support [8], [9].

Socially assistive robotics (SAR) may offer a potentially
groundbreaking solution to this problem. Past work suggests
that prompts from physically embodied robots can encourage
more cooperation over longer periods of use than onscreen
prompts or other non-embodied methods [10], [11]. As the
problem of workplace sedentary behavior grows increasingly
widespread, SAR systems may provide more scalable, sus-
tained, and motivational interventions when compared to
current state-of-the-art solutions. Accordingly, we seek to
understand if a social and physically embodied SAR system
encourages healthy workplace behaviors more effectively
than non-embodied methods.
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Fig. 1. Interaction between a computer user and our robotic system. The
robot prompts the participant to stand through behaviors that combined
driving motions, head motions, forklift motions, and facial expressions.

As the first step in investigating the suitability of SAR
systems in the workplace, we aim to identify advantages, dis-
advantages, and design constraints for robot-delivered break
prompts compared to existing break-prompting methods. We
will incorporate the findings presented here into continuing
work to confirm these findings and refine our SAR system.

With motivation from the related work detailed in
Section II, this paper presents two break-prompting inter-
vention tools: a buzzer-based system and a robot-based
system (as seen in Fig. 1). We implemented the system
hardware as described in Section III-B, and we evaluated both
systems with recorded data, semi-structured interviews, and
surveys, gathered during the within-subjects study outlined
in Section III. The results in Section IV show differences
between the studied systems, and the discussion in Section V
may help inform other researchers developing SAR systems
for encouraging healthier workplace behaviors.

II. RELATED WORK

We reviewed literature and identified break-prompting
interventions to reduce workplace sedentary behavior as a
potential use-case for socially assistive robots.

A. Benefits of Activity Breaks

Sedentary behaviors, such as sitting, are on the rise in the
modern workforce [1], [12], [13]. Past studies have shown
that prolonged periods of sitting reduce metabolic health,
increase cardiovascular morbidity and mortality, and increase
the probability of diseases such as type 2 diabetes, certain
cancers, and adolescent obesity [2], [14], [15]. Breaking
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up sedentary behavior with physical activity (e.g., standing,
walking, or exercise) leads to significant benefits, including
lowering mean arterial pressure [6] and lowering glucose
and insulin levels after eating [5], [16], [17]. Our study
accordingly focuses on a system for punctuating periods of
continual sitting with standing breaks.

B. Reminder Technologies

Recent interventions for breaking up periods of sedentary
behavior have involved reminder methods ranging from
computer-based prompts to encouragement from supervi-
sors [18]. Certain past interventions have succeeded in re-
ducing sedentary behavior during studied periods, but longer-
term benefits and break-taking adherence require additional
investigation [19]. Modern phone and computer applications
can facilitate the detection of periods of sedentary behav-
ior [20], [21] and delivery of prompts at appropriate times
to support the above efforts.

Specific intervention examples include phone applications
that successfully encouraged increased physical activity lev-
els [22] and reduced sedentary time [7] and a computer
application that improved cardiovascular health [6]. Another
computer application with prompts for microbreaks and
stretch breaks increased computer worker productivity, eval-
uated through keyboard and mouse recordings [4]. Many free
applications are available for turning phones or computers
into automatic break reminders (e.g., [23], [24]). However,
computer application prompts are often ignored, and even
successful past studies have encountered break-taking non-
compliance levels over 50% [25]. Our robotic system may
be able to encourage more cooperation with break prompts
and better long-term health gains than past work; compared
to non-social or software-based prompting approaches, social
and physically embodied robots are more likely to be viewed
as a motivational companion.

C. Socially Assistive Robotics (SAR)

Socially assistive robotics (SAR) leverages the physical
embodiment and social capabilities of robots to aid people
in scenarios from physical therapy to healthy eating [26]. In
previous work, SAR systems have successfully encouraged
adults during post-stroke physical therapy interventions [27],
led older adults through exercise routines [28], and pro-
moted social skill practice by children with developmental
delays [29]. These attainments are possible in part because
of the embodiment of SAR systems; past studies have
demonstrated that physical robots can encourage more coop-
eration, more positive feelings, and more feelings of bonding
than onscreen prompts or agents can [10], [11]. Generally,
SAR systems have considerable potential for cost-effective,
scalable, long-term, and motivational interventions [30].

The closest preceding SAR research to our project is a
prior study of Koosh ball-like robot prototypes that swayed
as a break prompt for office workers [31]. This work focused
mostly on the design principles for robots in everyday envi-
ronments, rather than achieving better health practices in the
workplace. Among the small user group in this prior study,

participants took breaks 41% of the time when prompted by
a non-social system and 65% of the time when prompted
by a social system. Our study builds upon this prior SAR
work, seeking to replicate the successful encouragement seen
in past physical activity studies, deploy a relatively complex
SAR platform, and run investigations with a large enough
sample size to identify statistically significant differences.

III. METHODS

We conducted a within-subjects study to compare the
effects of a buzzer system and a robotic system for prompting
periodic standing breaks. Participants used both following
systems for one day each in their regular workplace. All study
procedures were approved by the Oregon State University
Institutional Review Board under protocol #IRB-2019-0067.

A. Hypotheses

Our two main hypotheses were based on the positive
perceptions of SAR systems in [11] and the increased
motivation from a physically embodied robot in [10]:

H1: The robotic system will lead to more pleasant and
engaging interactions than the buzzer system.

H2: The robotic system will perform better than the
buzzer system in encouraging standing breaks.

B. System Hardware

We created two systems with shared computing and
sensing hardware but different interactive devices, as shown
in Fig. 2. A Raspberry Pi 3 B+ running Ubuntu Mate 18.04
acted as the primary computer. Project-specific software was
written in Python 3.5 or the Arduino language, and the ROS
Melodic platform was used to easily interface with sensors.

Buzzer

Robot

Chair Sensor 
Module

Sensor Pad

Webcam
Phone & Pi 

Module

Fig. 2. Overhead view of both systems at a mock student desk. During
deployments, only one of the two interactive devices (i.e., buzzer or robot)
would be present. The remaining elements were present in both systems.
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The Raspberry Pi computer connected to several peripheral
devices: a Nokia 6 Android phone, a SparkFun Pro nRF52840
Mini microcontroller connected to a seat sensor, and a
USB webcam. The Android phone communicated with the
computer through a USB-based Android Debug Bridge in the
robotic system, and was present as a visual placeholder in the
buzzer system. For both systems, the phone screen remained
unlit. The microcontroller in the chair sensor module sent
data from a commercial seat sensor pad to the computer
over a Python-controlled gatttool Bluetooth connection.
The computer used ffmpeg with options -c:v libx264
-preset ultrafast to record audio and video of par-
ticipant interactions via the webcam.

C. Study Design

The study had two conditions:
• Buzzer System (control condition): A custom buzzer

device delivered break prompts. This wireless, alarm-
like device contained a SparkFun Pro nRF52840 Mini
wireless microcontroller, accelerometer, shaftless vibra-
tion motor, and blue LED. The system communicated
with the computer using Bluetooth. When prompting,
the buzzer would vibrate and flash its LED in a 1.25 Hz
cycle for up to 60 seconds.

• Robotic System (experimental condition): An Anki
Cozmo robot delivered break prompts. Cozmo is a small
mobile robot with a programmable OLED face-like
screen, movable head, and forklift-like mechanisms. The
Cozmo system offers a suite of social behaviors in a
small and relatively inexpensive package. We created
Cozmo behaviors using the Cozmo SDK and controlled
the robot from the computer through the phone, which
ran the Cozmo application in SDK Mode. Prompt
behaviors were selected randomly from a predetermined
set and ran for 90 to 110 seconds. An example of these
behaviors is demonstrated in the video included with
this paper.

In both conditions, the device delivered a break prompt
after every 30 minutes of continuous sitting and could be
delayed for 10 minutes by being flipped over.

D. Participants

19 technical students enrolled in and completed the study.
Participants were adults between 19 and 30 years of age
(M = 24.5, SD = 3.1), with 13 male and 6 female par-
ticipants. On 7-point scales, participants self-reported high
prior experience with robotics (M = 5.4, SD = 1.3) and low
prior experience with Cozmo (M = 2.4, SD = 1.0). Each
participant received US$25 after completing the study.

E. Procedure

To begin, a research assistant explained that the study
involved two break-prompting systems. The participant gave
informed consent, saw a brief demonstration of both systems
in order of assigned use, and completed a pre-study survey.

Next, the participant used each of our break-prompting
systems for one day. Trial order was counterbalanced and

randomly assigned across participants. The research assistant
installed the first designated system in the participant’s
regular workplace and explained the system’s use.

The participant would then use the system for an agreed-
upon period of at least 3 hours. At the end of the day, the
research assistant collected the system, and the participant
completed a post-day survey. The following day, the research
assistant would deploy and explain the other break-prompting
system for the participant to use for the day. To conclude the
second day, the participant completed the post-day survey, a
post-study survey, and a semi-structured interview.

F. Measurement

Participants completed three types of surveys during the
study. All survey question responses, other than two free
response questions, used 7-point Likert scales.

• The pre-study survey captured participants’ precon-
ceptions about robots using a validated questionnaire
based on the Unified Theory of Acceptance and Use
of Technology (UTAUT) [32], and included questions
about participants’ robotics experience and health goals.

• The post-day survey, taken after both days of the study,
captured participants’ experiences during one study
day using questions adapted from the Self-Assessment
Manikin (SAM) [33] and the NASA Task Load Index
(TLX) [34], and included questions for free comment.

• The post-study survey included all UTAUT-based ques-
tions, personality questions, and demographic questions.

At the end of the study, participants completed a semi-
structured interview, which provided qualitative data on
participant experiences and design requirements.

During the study, we gathered data through system logs
and audiovisual recordings. Specifically, the system recorded
when the participant sat, the timing of break prompts, the
timing and type of participant responses to the prompts, and
audio and video before, during, and after each break prompt.
A Fitbit Inspire HR also tracked the heart rate, step count,
and physical activity level of participants. We parsed this data
to determine total participant sitting time, time from break
prompts to standing behaviors, and prompt success.

To compare behavioral and survey data, we extracted
emotion levels from facial expressions using OpenFace 2.2.0
on video recordings of each interaction. This software iden-
tified facial action unit (FAC) intensity (objective measures
of facial muscle activations that correspond with emotion
[35]) to evaluate participant happiness, sadness, and anger
levels [36]. For instance, observed cheek raising and lip
corner pulling contribute to the detected happiness level. We
excluded frames with facial tracking confidence below 0.7 as
recommended by the software author [37]. We also excluded
videos in which 95% or more of the analyzed frames were
below the confidence threshold. OpenFace analyzed video
starting from 15 seconds before the device prompt through
the duration of the interaction to find the change between
average pre-prompt and post-prompt happiness, sadness, and
anger for each participant. Lastly, we determined change in
gaze variability using the same OpenFace data by determining
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Fig. 3. Results of the post-day survey. Filled-in boxplots indicate significant differences. Purple lines with circles represent the median. Boxes range from
the 25th to the 75th percentiles, and whiskers range up to 1.5 times the interquartile range, representing all non-outlier data. “+” marks indicate outliers.

the difference in the mean distance from the gaze centroid
between pre-prompt and post-prompt excerpts.

G. Analysis

We analyzed survey and behavioral data using repeated-
measures analysis of variance (rANOVA) and analysis of
covariance (ANCOVA) tests with an α = 0.05 significance
level. We report effect size using η2, where η2 = 0.010 is
small, η2 = 0.059 is medium, and η2 = 0.138 is large [38].
Regression analyses, also with α = 0.05, helped us to identify
meaningful covariates for ANCOVAs.

Similarly to [15], which considers interview data from an
open-world study of a hospital robot, we used open coding
techniques to identify and assess important topics in the
interview data.

IV. RESULTS

A. Survey Responses

Responses to post-day Likert scale survey questions appear
in Fig. 3. After using the robotic system, participants’
responses were significantly higher for happiness (p = 0.007,
F (1, 37) = 9.09, η2 = 0.222), engagement of interactions
(p = 0.029, F (1, 37) = 5.66, η2 = 0.109), and enjoyment of
interactions (p = 0.001, F (1, 37) = 14.57, η2 = 0.274).

There were no significant differences between the pre-
and post-study survey responses, but preconception and
demographic data from these questionnaires yielded useful
covariates for understanding participant experiences. For
covariate and correlation analysis, UTAUT questions were
combined into their scale factors [32].

Correlation analysis showed that the more participants
initially accepted the robot and expected little effort in-
teracting with the robot, the less frustrated they reported
being while using the studied systems (acceptance: Pearson’s
r = 0.429, p = 0.007; effort expectations: Pearson’s r = 0.321,

p = 0.049). Expecting little effort interacting with the robot
also correlated with feelings of energy level in interactions
(Pearson’s r = 0.336, p = 0.039). Higher expectations of per-
formance for the robot and social reciprocity with the robot
were negatively correlated with self-reported break-taking
performance (expected performance: Pearson’s r = 0.433,
p = 0.007; social reciprocity: Pearson’s r = 0.368, p = 0.023).
Because of these notable correlations, we chose to use these
fours items as covariates in subsequent analysis.

ANCOVAs with the independent variable of system type
and each covariate confirmed these correlation effects with
the exception of the correlation of effort expectations with
energy level of interactions. In each case, the effect of system
type on happiness, engagement, enjoyment remained signif-
icant, and no covariates correlated significantly with these
measures. Thus, we excluded them from the following results.
Lastly, in all cases where the covariate had a significant effect,
the system type did not have a significant effect.

Participants that accepted the robot more reported less
frustration after system use (p = 0.007, F (1, 37) = 8.21,
η2 = 0.135); participants that expected little effort interacting
with the robot reported greater energy level of interactions
(p = 0.035, F (1, 37) = 4.83, η2 = 0.113); participants that ex-
pected higher performance from the robot self-assessed lower
performance after system use (p = 0.007, F (1, 37) = 8.12,
η2 = 0.188); and participants that perceived higher social
reciprocity from the robot self-assessed lower performance
after system use (p = 0.025, F (1, 37) = 5.49, η2 = 0.135).

B. Behavioral Data

On average, participants interacted with the buzzer prompts
5.8 times (SD = 2.5) over 329 minutes of system use
(SD = 68 min) and the robotic prompts 4.8 times (SD = 2.7)
over 325 minutes of system use (SD = 80 min).

Based on evaluation metrics in the related literature, we
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Fig. 4. Left: Sedentary times of each participant, expressed as a percentage
of the total time enrolled in the study condition. Right: Mean response time
after the start of the prompt for successful prompts (success defined as
participant standing within 120 seconds of the start of the prompt).

identified sedentary time and standing prompt success as two
key measures of break-taking system effectiveness. As shown
in Fig. 4, there was no significant difference in sedentary time
across conditions. There was also no significant difference
between the two systems’ abilities to encourage standing.
Participants stood during prompts an average of 87.2% of
the time (SD = 19.5%) when using the buzzer and 74.6% of
the time (SD = 33.3%) when using the robot. An ANCOVA
with system type as the independent variable and self-
reported performance as the covariate showed that self-
reported performance correlated with measured performance
(p = 0.002, F (1, 37) = 11.93, η2 = 0.245). Two participants
did not stand during any of their robotic prompts.

Figure 4 also shows that participants responded signifi-
cantly more quickly to the buzzer system compared to the
robotic system (p < 0.001, F (1, 33) = 21.83, η2 = 0.364).
We noticed that in the recorded video of system prompts,
participants would often watch or interact with the robot
before standing, while participants typically responded to the
buzzer immediately and without social interaction.

C. Video Analysis Data

OpenFace emotion and gaze variation results appear in
Fig. 5. Participants’ reduction in sadness was higher after
interacting with the robot system compared to after inter-
acting with the buzzer system (p = 0.037, F (1, 35) = 5.13,
η2 = 0.129). Change in happiness, anger, and gaze variation
were not significantly different between conditions. One
participant’s video dataset was excluded due to the webcam
failing to capture the participant’s face and five videos were
excluded under the criteria described in Section III-F.

While using this software, we noticed some inconsisten-
cies and false positives in facial recognition. We checked
the accuracy of OpenFace analysis by manually verifying
OpenFace’s identification of a human face in a randomly
selected subset of 3.2% of analyzed frames, finding accuracy
of 83.1± 0.7% with 95% confidence.

D. Interview Responses

The semi-structured interview yielded additional informa-
tion on user experiences. When asked to select their preferred
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Fig. 5. Results of OpenFace analysis. Average emotion levels before and
after the prompt had an output range from 0 to 5. Thus, axes for average
emotion level change between before and after prompts range from -5 to 5.
Axes for change in emotion level were truncated from -1 to 1 to illustrate
differences. Gaze variation analysis showed similar distributions.

break-taking system, thirteen (13) participants selected the
robotic system and six (6) selected the buzzer system.

To further understand participant experiences, we used
open coding on the interview data and identified 64 concepts
for our codebook. Two reliability-trained coders labeled
half of the interviews each, with a 10% overlap of labeled
interviews to ensure the consistency of the codes. Using
the equation described by Miles and Huberman [39], we
computed an inter-rater reliability of 0.83, demonstrating
a strong rater agreement. The codes that occurred most
frequently appear in Table I. Key quotes and themes appear
in our system design discussion in Section V.

E. Technical Challenges

To properly contextualize the overall results, it is important
to note four key technical challenges encountered during
the study. Firstly, system log errors led to incomplete chair
sensor data for three study days. These log errors did
not affect system functionality. For the behavioral analysis,
we reconstructed missing data using video recordings for
participant responses to break prompts and Fitbit data for
sedentary time.

Two participants experienced a fatal buzzer system error.
Electromagnetic interference from the vibrational motors
on I2C communications between the accelerometer and
microcontroller led to continuous, unresponsive prompting.
Since this error had the potential to negatively affect par-
ticipant interactions with the buzzer, we recalculated the
study statistics without these participants’ data and found
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TABLE I
INTERVIEW RESPONSE CODES THAT OCCURRED MOST FREQUENTLY.

N INDICATES BUZZER-RELATED CODES AND

• INDICATES ROBOT-RELATED CODES.

Description: Participant... Instances

• Personified the robot (e.g. through pronouns, emotions) 39
Liked that the systems made them take breaks 22
• Felt that the interactions were confusing 21
• Described the robot as cute 18
N Thought that the buzzer interrupted their work 14
• Would use the robot for an extended time 13
• Thought the robot interrupted their work 13
N Liked that the buzzer was simple 12
• Felt that the robot was too distracting 11
• Thought the robot was not personalized enough 11
• Wanted the robot to move less 11
N Liked that the buzzer was easy to understand 11
N Felt that the buzzer was frustrating OR irritating 11
Mentioned headphones or earbuds while working 10
Wants the systems to have more sensing/data 9
• Described the robot as cool 9
N Would use the buzzer for an extended time 9
• Felt that the robot caught their attention well 8
• Felt that the robot took up too much desk space 8
• Wants the robot to charge itself 8

that omitting these participants did not change any results.
The Cozmo SDK setup limited guarantees of robotic

system reliability. To control the robot, the system’s Android
phone needed to connect to the robot’s ad-hoc network, and
to connect, a user needed to press a button in the Cozmo
application. Wireless instability and interference resulted in
occasional disconnects, a fatal error as the robot could not be
reconnected automatically. After each instance of this error,
the robot was reconnected manually within 30 minutes.

Lastly, the Raspberry Pi was unable to provide enough
current to charge the phone while the system was running.
As a result, the phone had a battery life of approximately
6.5 hours in the study setup. This battery life limit resulted
in three instances of the phone running out of battery, a fatal
error for the robotic system. In one case, the participant did
not notice the error, which occurred in the last hour of the
session. In the other two cases, the problem was reported
promptly and the research assistant brought a replacement
system to continue the trial. We note that despite the
occasional connection and battery life problems, participants
preferred the robotic system overall.

V. DISCUSSION

Results supported the affective responses expected by H1.
Compared to the buzzer system, the robotic system led to
three significantly higher ratings of happiness, engagement,
and enjoyment. In particular, effects on happiness and en-
joyment had large effect sizes. Facial expression analysis
supported survey results by showing that the robotic system
led to a greater reduction of sadness. 68.4% of participants
preferred the robotic system, and interview comments in-
cluded many descriptions of the system as “fun,” “cute,”
and “engaging.” Interviews strongly featured personification

of the robot, such as by assigning pronouns and attributing
emotions and personality to the robot.

The break-prompting difference from H2 was not sup-
ported, as user sedentary time and prompt success across
systems was not significantly different. Although this result
does not support the hypothesis, it suggests that the robotic
system may reduce sedentary time as effectively as the buzzer
system. Participants also tended to spend longer responding
to robotic prompts. We explore some reasons below.

As a whole, the results show that participants felt positive
about the robotic prompts. In interviews, participants fre-
quently personified the robot, preferred the robotic system,
and were willing to use the robotic system past the end of the
study. However, this interest in robotic prompts occasionally
worked counter to participant break-taking. One participant
commented, “I felt like I was super motivated to sit in my
seat [...] I was like, ‘Oh, will this reset the timer? I want
to see the robot move, so I’ll sit a little longer.’” Another
user noted that “it was kind of interesting to watch what
it was doing. In the same way, I guess it kind of stopped
me from getting up as immediately, because I wanted to see
what it would do this time.” These behaviors contributed to
the higher response time for robot prompts.

At the same time, participants frequently overestimated the
capability of the SAR system, leading to some disappoint-
ment. Participants desired more sensing and capabilities, such
as one participant who said, “I wish that you could tell that
right now I’m 100 percent focused and you would’ve waited.”
Another participant desired speech and facial recognition
capabilities, commenting, “If it knows my name, if it can
start speaking to me like, ‘[Participant], you need to take
break [sic].’ Or ‘You’ve studied a lot.’ [...] If it was looking
to me [sic], then it would also be better.” Results showed
that higher expected performance and social reciprocity from
the robot correlated negatively with self-reported break-
taking performance, which emphasizes negative impacts
from overestimating the robot. While participants responded
positively about the robotic prompts, designing to minimize
overestimation and ensuring expectations are met may im-
prove results.

A. Design Implications

Our results indicate that future workplace SAR systems
should strategically leverage positive user perceptions. In
interview responses, participants gave praise for the expres-
siveness, cuteness, and physical embodiment of the robot.
One participant noted, “I felt like it started to become kind
of like a little pet on my desk, and I was happy.” The
interpretation of the robot as a pet demonstrates success in
designing the robot as a social entity, and this metaphor can
serve as a design tool for the future. In particular, emphasizing
“cute” and “cool” aspects may be advantageous.

In addition, preconceptions of robot performance and
sociability must align with the real capabilities of SAR
systems. Several participants found the robot’s behaviors to
be “confusing” and “not personalized enough” and mentioned
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the desire for the robot to park and charge itself. The appear-
ance of the SAR system led to expectations such as facial
recognition, mobility, and object manipulation. Mismatched
perceptions may lead to reduced performance perception of
the SAR system. To understand likely preconceptions, we
recommend surveying the target population about the robot
and use case during the design phase and iterating the design
based on feedback.

While participants broadly enjoyed the interactivity of the
robot, conflicting user opinions on robot movement indicate
the need for more personalization. Although ambient motion
has improved perceptions of SAR systems in other roles [40],
several participants disliked the built-in sleeping animation
of the Cozmo robot, finding the motor noise and motion
generated by this animation distracting. At the same time,
others perceived the sleeping animation to be endearing.
Overall, we recommend designing silent ambient behaviors
with gradual, non-intrusive motion for users that may be
distracted by more active ambient behaviors.

Participants also held differing opinions on the robot’s
prompt movements; one participant mentioned prompts
“making it really engaging for me, getting me excited to
actually get up and do something,” while another thought the
prompts were “a little too energetic [...] It was hard to know
what [the robot] expected of me.” Related worries about robot
movement included worries about distracting co-workers or
attracted unwanted attention. Future workplace SAR systems
should allow for user feedback for system personalization,
potentially including motion settings, appearance, and break
intervals. For instance, the included smartphone system could
request feedback after the first few interactions. Incorporating
this element could move future work into the area of
reinforcement learning.

The buzzer can also offer insights towards the design
of SAR systems. Participants described the buzzer system
as “simple,” “minimalist,” and “unobtrusive;” the buzzer
system ”does what it was supposed to.” Some participants
described the buzzer prompt as more sudden and as having an
annoying, alarm-like quality that was likely to cause disuse
over time, while other users actually preferred an annoying
system as a means to force break-taking and noted that “[The
robot] was maybe slightly not annoying enough.” Our future
SAR interventions require careful balance between prompt
pleasantness and compellingness; an exceedingly pleasant
prompt may fail from the start, while annoying prompt will
lead to discontinued use of the system over time. Again,
personalization and user feedback are necessary to achieve
this balance.

Participants valued clear and immediate responses. One
unique feature of the buzzer prompt was that, unlike the robot,
it would stop vibrating when the user stood up and resume
its prompting if a participant sat back down immediately.
A user noted “So I liked that this one would go off, and
then when you stand up and then sit immediately down, it
would keep going off [...] it would force you to stay up for
a long time.” Implementing clearer robot responses to user
behaviors (e.g., rewarding the user for standing) and better

robot situational awareness (e.g., tracking user faces) can
help to resolve the user uncertainty reflected in Table I and
improve user perceptions of the SAR systems. In addition,
this SAR system included designed behaviors that were only
tested internally by the research group. As the focal point of
the interaction, these behaviors should be tested and refined
to a greater degree.

Lastly, several participants mentioned that the robot took
up too much desk space, often due to the charging base of
the robot. Minimizing the footprint of the system may also
minimize both participant frustration and study facilitators’
difficulties with deploying the SAR.

B. Limitations and Future Work

Limitations and design recommendations will drive our
future work. We noted technical challenges such as connec-
tion stability and battery life in Section IV-E. To address
these, we plan to bypass the need for a phone and connect
the robot directly to our computer (e.g., by using an Android
emulator), thereby establishing programmatic control of the
wireless connection and removing phone battery issues in
future workplace SAR system iterations.

Although our robotic system is already autonomous,
adding the capabilities we recommend in Section V-A for
feedback and personalization will help to promote system
success in long-term use cases. We plan to develop additional
prompt behaviors, design more meaningful robot feedback,
create a system for user feedback, and implement real-time
perception of user interruptibility to make the system more
intelligent, independent, and adaptable. These improvements
will reduce the gap between participant expectations and
robot capabilities.

The limited number and background of participants in our
work is not representative of all computer users. Our study
also ran over a relatively short period of time, making the
participants susceptible to system novelty. Because of the
within-subject design of the study and the recruitment of
students from our university, our results may include demand
characteristics or please-the-experimenter bias.

However, this work provides design recommendations,
indicates the most pertinent measures, and demonstrates the
potential for SAR systems in this workplace, and thereby
acts as a critical stepping-stone towards future work to move
past these limitations and establish stronger results. With the
justification and guidance provided here, we plan to follow
up on this work with a longer-term, wider-sampling study
with an improved SAR system.

C. Conclusions

This work presents a novel direct comparison between
a SAR system and e-health-style intervention for reducing
sedentary behavior in the workplace. We built upon previous
SAR work to design a relatively complex workplace SAR
system, and we found evidence that a SAR system is more
satisfying than a non-social system. Results suggest that our
work and general workplace SAR efforts should incorpo-
rate more robot adaptability, feedback, and independence.
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These findings support the need for additional research and
development for SAR systems in the workplace.
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