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Abstract— Robots have unique abilities to influence people,
but when deploying robotic systems in assistive applications,
roboticists must understand how users perceive these systems’
behaviors. As part of an ongoing project to use robots as
motivational break-taking aids, we present Cozmo behaviors
that could function as the action space of a future robot
learning strategy. Before deploying these behaviors in the wild,
we evaluated them using an online video-based study with
N = 113 participants. Results show that participant perceptions
of Cozmo behaviors tend to match the intended valence and
energy level. Furthermore, behavior valence in particular has
a strong bearing on other perceived characteristics such as
interaction appeal, trustworthiness, and safety. Facial expres-
sion and loudness acted as important covariates, which may
help generalize these results to other behaviors and robots.
The products of this work can benefit those who are interested
in robot emotional expression and assistive robot applications.

I. INTRODUCTION

Social robots possess a unique ability to engage and
influence people using their embodiment in the physical
world and deliberately chosen emotional behaviors [1]. Ac-
cordingly, such systems have gained adoption in spaces from
entertainment to healthcare [2]. In our lab in particular, we
are investigating the use of a Cozmo robot for encouraging
workplace break-taking behaviors [3]. The Cozmo robot,
which is an accessible and low-cost platform, has also been
used to personalize tutoring [4], foster collaboration and
inclusion [5], and facilitate in-home human interactions [6].
But in our project and other related domains, how can
we understand human perceptions of the robot and its
emotions? This work explores user evaluations of Cozmo’s
potential prompt behaviors as a preliminary step before
incorporating such behaviors into a Markov Decision Process
(MDP) model, in which Cozmo’s action space will span
typical emotional displays from human psychology research
(e.g., [7]). Without adequate social skills, robots run the risk
of ostracizing themselves from the people they are meant
to assist [8]. Thus, research like the present investigation
of robotic emotional display is essential to the adoption of
social and socially assistive robots.

Previous efforts provide us with tools to conduct the
proposed research on robot emotion and important evidence
that the proposed application of Cozmo emotional behaviors
is valid. Past studies of robots such as the EMYS [9],
Roboceptionist [10], Geminoid F [11], KOBIAN [12], and
Baxter [13] robots demonstrated the possibility of designing
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Fig. 1. A subset of Cozmo emotive behaviors investigated in this work.

and validating specific emotional expressions for robotic
systems. Many of these works draw design inspiration from
the emotional models of Ekman [14] and Russell [7]. Past
work also offers support of the proposed strategy to modulate
Cozmo’s displayed emotions to influence user behaviors; two
related works show that people react differently depending
on the mood of a Cozmo [6] or Roboceptionist [15] robot.
Our work builds on these past efforts by studying a richer
array of Cozmo emotional behaviors than considered by the
most closely related work and by framing the understanding
of Cozmo’s emotions in a new workplace context that can
support the success of this robot in a socially assistive role.

To support the future successful application of emotional
Cozmo behaviors as part of the robot’s action space within
an MDP model, we focus on the following research aims in
the present paper: (1) understanding how well the intended
and perceived valence and energy level of Cozmo behaviors
align and (2) evaluating how differing Cozmo emotions affect
other perceived characteristics of the robot (e.g., intelligence,
safety, and trustworthiness). Towards these goals, we survey
the most closely related literature in Section II. Section III
outlines the methods of our online video-based study of
Cozmo behaviors like those shown in Fig. 1. The results in
Section IV show good alignment between the intended and
perceived Cozmo emotions, and the findings also demon-
strate that the emotional display of Cozmo influences other
ways in which the robot is perceived by users. Section V
discusses the key findings and design implications of this



work. Generally, the study results and included open-source
Cozmo behaviors can benefit researchers who require well
documented emotive Cozmo actions. Results of this study
may also be applied to robots with similar features, such
as those with LED display facial expressions. Further, the
design process and methods used in our work can help to
guide emotional categorization of new Cozmo behaviors and
successful long-term applications of socially assistive robots
like our break-taking Cozmo system.

II. RELATED WORK

This research builds on past studies of human perception
of robot emotion and social robots for long-term use.

A. Display and Perception of Robotic Emotions

Much of the past research on robot emotion builds from
psychology works such as Ekman’s basic emotions [14] and
Russell’s circumplex model of affect [7]. These references
provide frameworks for how to categorize and characterize
human emotions, thereby providing examples for how robot
affective displays should be designed and modulated to
mirror human feelings. Accordingly, several examples of past
robotics research design and evaluate robot emotions based
on Ekman’s model (e.g., [9], [11], [16], [17]) and Russell’s
model (e.g., [10], [13], [18], [19]). Based on this past work
and the potential of Russell’s circumplex model to allow
for a wider variety of emotional expressions, we based our
designed Cozmo behaviors to fall at different levels on this
model’s valence and energy level axes.

Past studies also demonstrate promise for people’s ability
to accurately recognize what emotions a robot is attempt-
ing to convey. In the above-mentioned work, researchers
typically design emotional expressions for robots and then
evaluate how accurately onlookers can perceive the intended
affect. Related work with the Roboceptionist platform sug-
gested that people could correctly recognize different emo-
tions and emotional intensities on this robot [10]. In a study
of five basic emotions displayed by the Geminoid F robot,
participants successfully identified happy, neutral, and sad
facial expressions, but angry and fearful facial expressions
had mixed results [11]. Fear was likewise the hardest emotion
for participants to recognize in past studies of the EMYS [9]
and EDDIE [18] robots. A study of custom facial expressions
for the Baxter robot’s face screen showed significant main
effects of perceived robot pleasantness and energeticness, as
well as viewer feelings of safety and pleasedness across the
seven studied facial expressions [13]. Even with more min-
imalistic robots, emotion recognition is possible; a Roomba
vacuum cleaning robot [19] and custom Maru robot [20]
effectively displayed interpretable emotions using abstract
cues like LED lights, motion/vibration, and sound.

The Cozmo robot studied in our work offers flexibility
in emotional expression via its OLED screen, locomotion,
head motion, and lift movements. Thus, we anticipate that
viewers will be able to accurately interpret our designed
emotional expressions for the robot. Compared to the built-
in behaviors of the commercial Cozmo robot, we investigate

more nuanced expression in this work; whereas the com-
mercial robot mainly displays “happy,” “sad,” and “angry,”
we design and evaluate behaviors across the full span of
Russell’s circumplex model.

B. Social Robots for Long-Term Human-Robot Interaction

Beyond helping robots to display particular types of affect,
emotional expression abilities can influence how people
respond to social robots. For example, happy behaviors by a
Cozmo robot typically move interactions with users forward,
while sad behaviors interrupt interactions by causing users to
look for problems in their earlier decisions [6]. Accordingly,
the work presented in this paper has implications on social
robots for long-term human-robot interaction (HRI).

Considering past long-term applications of social robots
can help us design useful Cozmo behaviors for long-term in-
terventions, such as our proposed break-taking support. Past
long-term applications of these robots include HRI in health-
care, education, and domestic settings [21]. Past healthcare
interventions such as older adult interactions with a PARO
robot showed improvement in patient feelings and reductions
of stress for patients and nurses [22]. Similarly, the Autom
dieting support robot helped users to track significantly more
calorie and exercise information than study participants who
used computer- or paper-based logging systems [23]. In the
education space, children who persisted in interactions with a
Robovie robot improved their English skills more than peers
who did not interact with the robot [24]. Deployments of
the SPRITE and Jibo robots in home-based autism therapy
interventions demonstrated potential for improving child
numeracy [25] and social behavior [26] skills.

Across all of these long-term social robot applications, de-
signed and perceived robot emotional expression can vastly
change the interaction experience (as suggested by the results
of [10] and [6]). Accordingly, the work presented in this
paper contributes to long-term HRI efforts by providing clear
and well understood emotionally expressive behaviors for
the Cozmo robot. Precise emotional robot expressions in our
envisioned break-taking application can help users to better
understand the status of the robot and what they should do
to perform well in the intervention.

III. METHODS

The premise and motivation for this study arose from
a larger effort to create a socially assistive robotic system
for supporting break-taking at work. In pilot studies of this
proposed intervention, participants sometimes had trouble
understanding what the Cozmo robot was expressing [3].
Thus, the next steps of this project include this paper’s efforts
to more accurately design and display Cozmo emotions. The
described mixed-design study was approved by the Oregon
State University (OSU) Institutional Review Board under
protocol #IRB-2019-0172.

A. Hypotheses

We developed three main hypotheses for the study:



H1: Human ratings of Cozmo’s emotional behaviors will
align with intended behavior valence and energy level
on Russell’s circumplex model [7]. Past robotics re-
search supports the idea that perceptions of well de-
signed robot emotions can fit this model [10], [13].

H2: Positively-valenced behaviors will lead to greater par-
ticipant willingness to interact, opinion of robot trust-
worthiness, and interpretation of robot safety compared
to negatively-valenced behaviors. This hypothesis was
informed by pilot results from a small sample of
test participants (with the same study design as in
the present paper but a different initial test group of
participants, before official data collection began) and
is supported by past work like [15], in which people
were more inclined to interact with a positive robot and
rate their own affect as positive during the interaction
than with a negatively-valenced robot.

H3: High-energy behaviors will lead to greater participant
evaluation of robot intelligence compared to low-energy
behaviors. This exploratory hypothesis was informed by
the aforementioned pilot results.

B. Cozmo Behavior Design

Our Cozmo behaviors were created with Russell’s circum-
plex model in mind [7]. We designed four animations for
each of the following categories:

• Neutral Valence, High Energy Level (Arousal) [Active]
• Low Valence, High Energy Level [Unpleasant Active]
• Low Valence, Neutral Energy Level [Unpleasant] (e.g.,

Fig. 2)
• Low Valence, Low Energy Level [Unpleasant Inactive]
• Neutral Valence, Low Energy Level [Inactive]
• High Valence, Low Energy Level [Pleasant Inactive]
• High Valence, Neutral Energy Level [Pleasant]
• High Valence, High Energy Level [Pleasant Active]

(e.g., Fig. 3)
This spread of emotional expression allows for the robot

to imitate typical types of human affect and encourage users
in different ways. For example, in the break-taking robot
assistant scenario, a cooperative user may be sufficiently
motivated by low-energy and neutral- or positive-valenced
cues, while a stubborn user may not be spurred to take a
break until Cozmo displays a negatively-valenced and high-
energy behavior.

Eight behavioral categories with four behaviors in each
category were chosen to provide adequate coverage of Rus-
sell’s circumplex model [7]. We used the Cozmo software de-
velopment kit (SDK) [27] to hand-design the 32 animations
from a combination of built-in behaviors and custom actions.
The video included with this paper shows a demonstration
of one behavior from each category. Open-source versions of
the resulting behaviors are available in the code repository
associated with this paper [28]. The animations leveraged
Cozmo’s facial expressions, locomotion, head motion, and
lift movement. Reducing noise in workplace robotic inter-
ventions is essential [29], so we muted Cozmo’s audio (e.g.,
built-in non-linguistic utterances and speech) for all of the

Fig. 2. A subset of cropped frames from the “frustrated” behavior.

Fig. 3. A subset of cropped frames from the “celebratory” behavior.

animations via the Cozmo phone application settings. As
observable in the video included with this paper, conse-
quential sounds, such as the noise of Cozmo’s motors, were
still audible in the animation videos. Each animation was
between 12 and 18 seconds long (M = 13.84, SD = 1.65).
Informal piloting with lab members, peers, and animation
expert Carmen Tiffany helped to ensure that the programmed
behaviors were a reasonable fit with the intended affective
categories. Videos of the resulting behaviors appear in the
code repository associated with this work [28].

C. Measurement

The survey collected information and responses from
participants with the following questionnaires:

Attitudes questionnaire: at the beginning of the survey, the
Negative Attitudes towards Robots Scale (NARS) captured
participants’ preconceptions on robots for potential use as
a covariate in subsequent analyses. Participant ratings of
agreement with fourteen statements on seven-point Likert
scales were combined into subscales of negative attitudes
towards interactions with robots, social influence of robots,
and emotions in robots as described in [30].

Demographic questionnaire: next, participants answered de-
mographic and occupational questions.

Post-stimulus questionnaire: after each stimulus, the survey
asked how much participants agreed with the following
statements on seven-point Likert scales:
1) This robot seems pleasant.
2) This robot seems energetic.
3) I would interact with a robot that behaves this way.
4) A robot that behaves this way seems trustworthy.
5) A robot that behaves this way seems safe to interact with.
6) A robot that behaves this way seems intelligent.
Questions 1 and 2 measure valence and energy level of
Russell’s circumplex model [7], while questions 3-6 helped
to enrich the data without overburdening participants through
measurements selected from common metrics for social
robots and the Godspeed survey [31], [32]. Lastly, partici-
pants indicated which of the following robot feature(s) most
influenced their responses to the preceding questions: “facial
expressions,” “locomotion of robot,” “other robot motion
(head, lift),” “sounds of robot,” or “other.”

Overall perceptions questionnaire: after responding to one
stimulus from each category (eight total stimuli), participants



answered questions about their envisioned relationship(s)
with Cozmo, the robot’s perceived gender, and metaphor(s)
for the robot’s behavior. These items arose from our dis-
cussions with Carmen Tiffany, during which we realized
that understanding how users naturally perceive the robot
will be important to successful design of robot break-taking
interventions.

Free-response question: at the close of the study, an optional
free-response question asked participants to describe the
characteristics of the stimuli that most strongly influenced
the survey responses.

We also extracted objective measures to help generalize
the results of this work:

Facial expression measures: for each stimulus, a research
team member coded the proportions of video frames in
which the robot displayed a positive, neutral, or negative
facial expression. Mappings from facial expression to valence
were accomplished using facial expression-to-emotion keys
released by Anki in their original robot promotional materials
and the associated placement of these emotions on Russell’s
circumplex model. In the future, this data could be extracted
programmatically by tracking which faces are used and for
how long in any given animation.

Audio measures: N5 loudness and peak loudness were ex-
tracted from the audio of each stimulus [33]. We also
calculated an average fundamental frequency, derived by
weighting fundamental frequencies found using normalized
correlation functions [34] with corresponding loudness for
subsections of the video. As movement of the Cozmo robot
results in servo noises, we suspected that these values might
relate to energeticness of robot behaviors.

D. Participants

The study was completed by N = 113 students from
Oregon State University between 18 and 45 years of age
(M = 22.0, SD = 5.9), including 79 cisgender women
and 34 cisgender men. While most participants (66.4%)
were pursuing a major course of study in science, tech-
nology, engineering, or mathematics (STEM), participants
reported little to no experience with both robots (M = 1.75,
SD = 0.74) and Cozmo (M = 1.09, SD = 0.39) on a
seven-point Likert scale. Participant responses on the NARS
assessment [30] showed generally neutral attitudes towards
interactions with robots (M = 3.53, SD = 1.09), social
influence of robots (M = 4.58, SD = 1.14), and emotions
in robots (M = 4.53, SD = 1.21).

E. Procedure

Participants were recruited through a university student
pool, through which introductory psychology course students
can complete studies for class credit. Consenting participants
completed the study online using a Qualtrics survey. The
initial survey pages included questions about the partici-
pant’s general views of robots and demographic informa-
tion, followed by an introduction to the study. Participants
then viewed 8 randomly assigned Cozmo animations and

answered post-stimulus questions about the robot’s valence,
energy level, other characteristics of interest, and key aspects
of the robot’s behavior. Stimulus assignment was balanced
across respondents. Lastly, participants answered closing
questions about general perceptions of Cozmo. To ensure
data quality, we required responses to all questions except
open-ended free response fields. Timers throughout the sur-
vey helped to ensure that participants watched the full robot
videos and spent sufficient time completing question sets, and
attention-check questions helped to exclude any respondents
who randomly selected answers.

F. Analysis

As participants responded to a subset of the stimuli,
survey responses were analyzed through linear mixed models
(LMMs) with α = 0.05 and participant number as the
random effect to account for participant-specific response
patterns. Where applicable, significant differences between
behavior categories were further explored using the Holm-
Bonferroni method, which identified pairwise differences and
the resulting p values of each comparison [35]. We report
effect size via marginal r2, the variance explained by the
fixed effects of the LMM, where r2 = 0.010 is considered
a small effect, r2 = 0.040 a medium effect, r2 = 0.090 a
large effect, and r2 = 0.016 a very large effect [36].

Based on the objective measures, we identified useful ob-
jective scales via an exploratory feature engineering process.
We then applied those objective scales as fixed effects in
LMMs as described above.

Results were analyzed using jamovi [37], [38], [39].

IV. RESULTS

Key results include the locations of Cozmo behaviors
on pleasantness and energy level axes, differences in robot
characteristic ratings between behavior categories and along
objective metrics, and general perceptions of Cozmo that can
help inform how we use this robot in future interventions.

A. Response Alignment with Russell’s Circumplex Model

LMMs using behavior category as the fixed effect in-
dicated that the categories led to differences in perceived
valence (p < 0.001, F (7, 1707.07) = 76.17, r2 = 0.190)
and energy level (p < 0.001, F (7, 1712.70) = 165.78,
r2 = 0.353). Post-hoc analysis for valence showed that 23 of
28 pairwise comparisons yielded significant differences, with
18 being very significant (p < 0.001). Differences between
Active and Pleasant Active, Active and Pleasant Inactive,
Pleasant Active and Pleasant Inactive, Unpleasant and Un-
pleasant Inactive, and Pleasant and Pleasant Inactive were
not significant. Similarly, post-hoc analysis for energy level
showed that 25 of 28 pairwise comparisons had pairwise
differences, with 24 being very significant (p < 0.001).
Differences between Active and Unpleasant Active, Inactive
and Unpleasant Inactive, and Unpleasant Active and Pleasant
were not significant. The placement of each animation along
these two axes appears in Fig. 4.
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B. Influence of Behavior Categories on Robot Perception

The LMMs also showed that behavior categories corre-
lated with significant differences in perceived willingness to
interact (p < 0.001, F (7, 1697.97) = 43.26, r2 = 0.096),
trustworthiness (p < 0.001, F (7, 1707.07) = 76.17, r2 =
0.104), safety (p < 0.001, F (7, 1707.07) = 76.17, r2 =
0.100), and intelligence (p < 0.001, F (7, 1707.07) = 76.17,
r2 = 0.032). Figure 5 shows the response distributions for
each category and the results of pairwise comparisons.

At a high level, low-valence behaviors led to a significant
reduction in willingness to interact, trustworthiness, and
safety compared to all other behaviors. In all four measures,
participants rated Pleasant behaviors highest and, in all
measures except intelligence, participants rated Unpleasant
Active behaviors lowest. Some significant differences ap-
peared between category ratings for robot intelligence but
did not form a clear overall trend.

C. General Perceptions of the Cozmo Robot

At the end of the post-stimulus questionnaire, participants
checked the most important factor(s) that influenced their
responses to the six previously mentioned post-stimulus
questions. Facial expressions were checked 35.7% of the
time, overall locomotion 29.1% of the time, head and lift

motion 24.7% of the time, sound 9.6% of the time, and
“other” 1.0% of the time.

The close of the survey also asked participants to imag-
ine their relationship with the robot if they had the robot
in their home for day-to-day use. When checking their
relationship(s), “toy” occurred 48.0% of the time, “pet”
26.0% of the time, “friend” 14.5% of the time, “peer”
4.6% of the time, “child” 3.5% of the time, and “other”
3.5% of the time. Participants also described the robot
as “male” (59.3%), “androgynous” (15.9%), “no gender”
(8.9%), “male-androgynous” (8.0%), or “unsure” (8.0%).
Lastly, when asked what the robot behaved like, partici-
pants checked “mammal” 38.0% of the time, “[not] like
any animal” 35.7% of the time, “bird” 3.9% of the time,
“invertebrate” 3.1% of the time, “reptile” 2.3% of the time,
“amphibian” 2.3% of the time, “fish” 0.8% of the time, and
“other” 14.0% of the time.

D. Exploratory Feature Engineering of Objective Measures

A correlation matrix of the six objective measures indi-
cated three potential groupings of the measures: (1) FE,
a facial expression scale, formed from the proportions of
positive, neutral, and negative facial expressions, with neg-
ative facial expressions correlating negatively with the other
expression types, (2) LS, a loudness scale formed from peak
loudness and N5 loudness, and (3) FR, a frequency scale
formed from the average fundamental frequency. In partic-
ular, neutral expression proportion and negative expression
proportion correlated strongly and negatively (r = −0.815,
p < 0.001), while peak loudness and N5 loudness correlated
strongly and positively (r = 0.825, p < 0.001).

As the expression proportions generally combined to reach
1 and neutral and negative expressions correlated so strongly,
we simplified the facial expression scale into a two-element
scale like so: FE = P − N , where P is the proportion
of positive expressions and N is the proportion of negative
expressions. Similarly, the loudness scale was formed as:
LS = PL + NL, where PL represents peak loudness and
NL represents N5 loudness. For LS and FR, the frequency
scale, we standardized the scales so that M = 0 and SD = 1
to be able to compare parameter estimates.

E. Exploring Objective Scales as Model Effects

LMMs with all three objective scales as the fixed effects
showed that the frequency scale yielded F values and param-
eter estimates between 1 and 3 orders of magnitude smaller
than the other scales and null results for 3 of 6 LMMs. Thus,
we excluded the frequency scale from the final analysis.

LMMs with the facial expression and loudness scales as
fixed effects showed that these two scales acted as important
covariates for all measures except intelligence. Figure 6
shows the position of each behavior along these scales.

The results of the LMMs yielded significance for both
fixed effects with p < 0.001 except for the effect of the
loudness scale on perceived intelligence, which was not
significant. Overall LMM effect sizes were more than very
large for valence (r2 = 0.180) and energy level (r2 = 0.304),
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approximately large for willingness to interact (r2 = 0.087),
trustworthiness (r2 = 0.089), and safety (r2 = 0.100), and
less than small for intelligence (r2 = 0.007).

For all measures except energy level, parameter estimates
showed a positive and more significant effect for the facial
expression scale and a negative and smaller effect for the
loudness scale. For energy level, the parameter estimates for
both scales were positive, but loudness had a larger and more
significant parameter estimate, indicating a stronger positive
relationship between loudness and energy level.

V. DISCUSSION

H1 was well supported by the data. We saw a general
trend for our designed affective Cozmo behaviors to fall as
expected on Russell’s circumplex model. Two of the behavior
categories were most challenging to design as intended:
Pleasant Inactive and Active. This is consistent with past
work in [13], which also had difficulty designing “calm”-
and “alert”-seeming robot behaviors. In both our work and
this past paper, particularly for behaviors with high valence
and/or high energy levels, ratings of the two characteris-
tics tended to be directly related. Participant free response
feedback supported the idea that Cozmo demonstrated a
representative span of emotions; participants commented that
Cozmo was “able to portray a variety of moods” and that
Cozmo’s behavior “resembled emotions such as energetic,
sad, mad, or happy.”

The results supported H2 since behaviors that were de-
signed to be higher- and neutral-valenced typically led to

higher ratings of willingness to interact with the robot, robot
trustworthiness, and robot safety compared to lower-valenced
behaviors. The majority of significant pairwise differences
appeared between low-valence behaviors and other valence
level categories. Thus, it appears that the distinction between
“negative” and any other valence level is more important than
other differences in the three total levels considered, perhaps
because only negative behavior seems alienating or intim-
idating. Some participant comments, such as “I would feel
more comfortable interacting with a robot that had [...] happy
facial characteristics,” “when the robot had [a] happier facial
expression I considered it more trustworthy and safe,” and
“angry facial expressions made me feel that the robot may
not be trustworthy” support this interpretation. Furthermore,
strong correlations between the exploratory facial expression
scale and all measures indicate that the comments focus on
facial expressions may reflect a consistent underlying effect.

H3 was not well supported by our results. Some differ-
ences appeared in the intelligence ratings, but they did not
seem strongly related to energy level. Six of the significant
pairwise differences were between high-energy categories
and other behavior types, but the direction of the relationship
was not uniform. We think this result may mean that a high-
energy robot might seem playful (e.g., “egging you on to
play with them”) or angry/uncontrollable/aggressive (e.g., “it
acted crazy, it was not very pleasant,” “[it] seems to throw
fits”) depending on the circumstances. Low-energy behavior
perceptions were also split; respondents saw these behaviors
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as either shifty (e.g., “it created a feeling of uncertainty/being
watched,” “it felt hostile or suspicious,” “it seemed lazy it
made me not want to trust it”) or pleasant (e.g., “I prefer
more subtle or smooth movements,” “I thought I could trust
the [slower] robot”). Exploratory analysis using the loudness
scale, which may act as a proxy variable for robot motion
speed and amplitude, did not show a significant effect on
intelligence. However, with the exception of energy level,
the loudness scale correlated with a decrease in the other
five ratings. Thus, behaviors that moderate the amount of
motion may successfully increase perceived interactability,
trustworthiness, and safety. Further investigation is required
to determine whether the motion or the sound is responsible
for these effects.

Based on the closing survey questions, we learned more
about how participants viewed Cozmo generally and how
participants viewed their relationship with Cozmo. One of
the most resounding agreements was that Cozmo presents
as male; more than half of respondents identified Cozmo’s
gender as male, and no one placed the robot on the female
side of the spectrum. Cozmo facial expressions seemed
to be the single most important attribute for participant
perceptions, although robot base, head, and lift motion also
played a notable role. Popular interpretations of the robot’s
relationship with the user were as a toy or pet, and most
responses indicated that the robot was either like a mammal
or like no animal at all. This split seems to indicate that when
adapting the robotic system for break-taking support in the
workplace, we might be wise to design two main types of
interaction paradigms: one which is more pet-like (with the
design metaphor of how a dog or cat might behave), and one
that is more electronic device-like (with design metaphors of
gadgets, desk toys, or phone applications).

A. Design Implications

Our results indicate that we can produce different emotions
that are interpreted by people roughly as intended around
the entirety of Russell’s circumplex model. This result helps
to push the boundary on the primarily happy or sad emo-
tions built into the commercial Cozmo robot. Notably, the
provided open-source behaviors accomplish these differences
in perception even without the non-linguistic utterances and
other added sounds included in many of Cozmo’s built-in
behaviors. We also found that we can change other perceived
characteristics of the robot (e.g., participant desire to interact
with Cozmo, perceived trustworthiness, and perceived safety)
just by changing the affective display of the robot. For break-
taking, these discoveries will reduce potential confusion
arising from break-taking prompts and increase participants’
willingness to use the robotic break-taking system.

Additional insights from the study help us to identify
design paradigms for future human-Cozmo interactions in
this robot’s various use cases (e.g., habit formation, en-
tertainment, social play facilitation, tutoring), as well as
the objective features of facial expression proportions and
loudness that may be manipulated to achieve desired per-
ceptions. These objective features may be extended to other
robots’ facial expressions and expressive motions to support
behavior design and improve the match between intended
and actual perceptions. Thus, the end design products of this
work provide a rich emotional action space for use in the
proposed future Cozmo MDP, offer ways to change how the
user perceives and responds to Cozmo and similar robots
through modulations of the presented robot emotions alone,
and inform the design of robot interactions or relationships
with people to support successful future interventions.

B. Key Strengths and Limitations

One strength of this work is the involvement of an
animation expert in the design of the Cozmo behaviors.
This collaboration may have supported the positive results,
in which the Cozmo behaviors were perceived mostly as
intended. This project supports concrete future applications
of the Cozmo system and models good design for social
robotic deployments (i.e., understanding how robot behaviors
are perceived in isolation before introducing them in a more
complex scenario). Additionally, the open-sourcing of the
involved Cozmo behaviors [28] supports progress of social
robotics as a whole by contributing to the collective resources
for a common/accessible robot platform.

A main limitation of this work is its use of an online
video-based study (rather than in-person interactions) to
evaluate Cozmo behaviors. Our planned extension of this
work will involve in-person studies to help confirm that the
results generalize to in-the-wild interactions with robots. The
participant population also did not fully represent all poten-
tial users of our robotic system. Based on our recruitment
pool, most participants were young adult university students
from the United States. In our follow-up work, we plan to
recruit participants with a wider variety of backgrounds and
identities to better represent potential Cozmo users.



VI. CONCLUSIONS

In this paper, we present the evaluation of Cozmo be-
haviors for use in a future assistive robotic system. We
designed these behaviors with the help of a collaborator
from animation, and we evaluated the Cozmo emotional
expressions using an online video-based survey. Results of
the survey showed that the behaviors generally matched their
intended perception and provided important design infor-
mation (e.g., a more positively-valenced robot is perceived
better in other user ratings, and Cozmo is generally viewed
as a male pet-like or toy-like entity). These findings can
support the introduction of our designed Cozmo behaviors
into future systems such as our proposed break-taking aid.
Other researchers and robot designers with interest in social
robotics, socially assistive robotic interventions, and open-
source tools for affective robots can benefit from this work.
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