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Abstract— Transformative robot sound can improve per-
ceptions of robots, but its implementation will likely require
more hardware and cost. Does the addition of transformative
sound yield an increase in value to offset this cost? Using the
van Westendorp Price Sensitivity Meter, a questionnaire from
marketing research, n = 97 participants measured acceptable
price points for a robot with (and without) transformative
sound. Results showed similar perceptual improvements as past
studies, as well as a significant increase in perceived value,
when transformative sound was included. These increases in
social and value perceptions of robots confirm the utility of
adding transformative sound to robots. This work benefits
the broader human-robot interaction research community by
sharing more ways to understand and validate the incorporation
of transformative robot sound and other robot features.

I. INTRODUCTION

Transformative robot sound—intentionally added non-
linguistic sound that complements a robot’s normal sound
profile—is universal for robots that appear in popular media,
yet is often uncommon for robots in the real world. Our past
work, which first introduced transformative sound, has shown
that transformative sound makes robots seem more energetic,
happier, warmer, and more competent [1]. However, adding
transformative sound to robots may incur additional produc-
tion costs, as many robots currently lack audio hardware [2].
Using the van Westendorp Price Sensitivity Meter (PSM),
a widely used technique in market research [3], we aimed
to answer the question: do the perceptual benefits of adding
transformative robot sound translate to increased perceived
value for users?

Value is a complex construct that encompasses aspects such
as practical and perceptual features and personal trade-offs.
Past work in human-robot interaction (HRI) has attempted to
measure value [4]–[6], but to the authors’ best knowledge,
HRI lacks an accepted measurement instrument for perceived
value [7]. Related work in human-computer interaction (HCI)
has previously proposed using the PSM as a tool for value-
based software engineering [8], [9], which captures perceived
value as a price. In this paper, we aim to explore this method
for surveying and analyzing perceived value in relation to
transformative robot sound.

To explore our central research question, we conducted
an investigation that leveraged prior work on transforma-
tive robot sound and incorporated the PSM as a means
of measuring perceived value. We reviewed related work
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Fig. 1: An overview of the study manipulation and the
primary result: a significant increase in perceived value due

to transformative sound.

on transformative sound and pricing models in Section II
before designing a study and associated analysis methods
in Section III. Figure 1 summarizes the key result and
Section IV presents the results in detail. We discuss these
results, their implications on the usefulness of transformative
robot sound and the PSM, the strengths and limitations
of this work, and future work in Section V. The primary
contributions of this work include demonstrating a signif-
icant increase of value due to transformative robot sound,
introducing the PSM questionnaire to HRI, and providing
guidance on use of the PSM.

II. RELATED WORK

A. The Effects of Transformative Robot Sound

Transformative robot sound research has shown a con-
sistent perceptual and objective benefit to HRI in recent
work. For example, participants walking near a Baxter robot
found added transformative sound in the form of music to
be more calming, gentle, soft, smooth, friendly, and pleasant
than just consequential sound, the sound that naturally arises
from the robot’s operation [10]. A Magabot approaching
participants with different transformative sound profiles led to
changes in perceived anthropomorphism, animacy, likeability,
intelligence, and safety [11], [12]. In cooperative localization



tasks, a hidden robot using broadband and tonal sound
increased accuracy, inference speed, perceived noticeability,
and perceived localizability [13]. Finally, in our own study
of five robots, adding transformative sound consistently
increased perceived happiness, energy level, warmth, and
competence across robot archetypes [1].

The suitability of transformative robot sound may im-
pact its effectiveness in improving HRI [1]. “Musical” or
musically-inspired transformative sound led to better per-
ceptions of a robot than “harmonic” or “mechanical” trans-
formative sounds [14]. Personalizing transformative robot
sounds through interactive feedback may also improve the
sound’s effectiveness for individual users [15]. While these
works have established the benefit of transformative sound,
it is not yet clear what the implications of robot sound are
from a commercial perspective. Thus, we aimed to extend
prior work by also measuring the perceived value of adding
transformative sound to consumer robots.

B. Measurement Instruments for Perceived Value

In HRI, measurement instruments for attitudinal constructs
generally use bipolar Likert-style questions [16]. In marketing
research, the PERceived VALue (PERVAL) survey offers this
commonly accepted format in a 19-item questionnaire [17]
and has been partially implemented in work in HRI [6].
However, the PERVAL questionnaire requires a predeter-
mined price for the product in question. Thus, to avoid bias
from priming participants with a particular dollar value, we
sought an instrument that would not unnecessarily predispose
respondents to a given initial price.

Pricing models offer an alternative approach by measuring
price (i.e., the amount users will pay for a product), rather
than value (i.e., the benefit that a user gains from a product).
Indeed, price likely acts as a proxy for value as users make
purchasing decisions based on this balance of price and
value [18]. Marketing research has developed several methods
for determining acceptable prices: market data, experiments,
indirect surveys, and direct surveys. We identified surveys
that were most appropriate for HRI work, as previous market
data and experiments on perceived value have flaws for our
purposes. Specifically, market data requires access to sales
data and does not facilitate the investigation of new products
or features, while experiments are resource-intensive and can
predispose perceived prices [19].

Indirect surveys, such as the Gabor-Granger method,
measure willingness-to-pay by asking successive yes-or-no
questions at various price points, similar to a binary tree.
A reversed cumulative distribution of the results shows
declining willingness-to-pay as the price increases. However,
survey designers may introduce bias through the price points
provided in the survey and the method best suits pricing
situations later in the product development cycle [18]. Other
indirect methods include conjoint analysis, where participants
effectively rank features according to perceived value, and
discrete choice models, where participants choose between
different product profiles with various features and price
points [19]. These methods can provide greater flexibility and

accuracy but require intensive design support and complex
studies to simulate market conditions [18].

Direct surveys begin with the simple question: “What is
the highest price you would be willing to pay for product X?”
Similar to indirect surveys, the results form a willingness-
to-pay distribution. More complex direct surveys, such as
the PSM, can also account for factors such as perceived
quality [18]. However, accuracy and validity remain a concern
for direct survey methods [19]. Alternative models and
regression techniques for the PSM, also known as extended
PSM, may help alleviate these concerns while maintaining
user-based price expectations [20]. Though popular in practi-
cal marketing research [18], the PSM has seen limited use in
HCI and, to the authors’ best knowledge, no use in HRI [8],
[21]. Work in HCI has examined the PSM in the context
of value-based software engineering, where participants were
presented with a mobile software application and a simulation
of its functionality [8], or evaluated a software product they
were already familiar with [21]. In this paper, we applied the
PSM with both the traditional and extended analysis methods
to evaluate the PSM’s promise for HRI.

III. METHODS

A. Participants

We conducted a study on undergraduate students from the
Oregon State University School of Psychological Science
Subject Pool to determine whether participants would value
a robot differently when a recording of the robot included
transformative sound. Participants included 97 adults between
18 and 54 years of age (M = 23.2, SD = 7.2), with
69.1% women, 27.8% men, 2.1% non-binary people, and
1.0% transgender men. Participants mostly had no awareness
(49.5%) or were generally aware (38.1%) of the TurtleBot
2 or similar products; few had either investigated (5.2%),
participated in a demo of (5.2%), or regularly used (2.1%)
such products. Few participants (19.6%) had educational,
hobby, or work experience with music or other sound-related
fields. All study procedures were approved by Oregon State
University under protocol #IRB-2019-0172.

B. Hypotheses

We aimed to extend our past work by incorporating a new
hypothesis while confirming prior results in [1]. Thus, we
added the new hypothesis:

H1: Adding transformative sound to a robot will lead
to higher perceived value of the robot and higher
purchasing interest in the robot.

while maintaining the hypothesis in [1]:
H2: Adding transformative sound will lead to improved

perceptions of robot valence, energy level, warmth,
competence, and comfort.

C. Study Design

The study employed two videos of a TurtleBot 2 robot
previously used in [1]:

• OriginalSound-BehaviorC-Towards.mp4
(original sound stimulus)



Fig. 2: Cropped keyframes from the video stimuli, which were 13 seconds long.

• TransformedSound-BehaviorC-Towards.mp4
(transformed sound stimulus)

These videos are available in [22] and feature the TurtleBot 2
navigating a trajectory with and without overlaid transfor-
mative sound designed by a performing artist collaborator.
Figure 2 shows keyframes of the video.

Using these videos, we developed a within-subjects study
in which participants completed a 10-minute online survey.
After providing informed consent, participants first com-
pleted an introductory module to calibrate their audio device
volume. Participants then viewed one of the video stimuli,
completed the value and social perception questionnaires,
and completed an attention check. These steps were then
repeated for the remaining stimulus. Stimulus order was
counterbalanced across participants. In the final part of the
experiment, participants completed a free-response question
and demographic questionnaire. All measures are described
in more detail in Sec. III-D.

Participants were compensated with course credit for com-
pleting the surveys. Participants who did not finish the survey
(7), failed an attention check (1), or responded with “0” for
any pricing questions (2) were excluded from analysis. No
participants had previously participated in studies from [1].

D. Measures

The 10-minute survey included these questionnaires:

Value questionnaire: after each stimulus, van Westendorp’s
Price Sensitivity Meter (PSM) captured the price in USD for
the robot shown in each clip relative to perceptions of the
robot as too cheap (TC), cheap (C), expensive (E), and too
expensive (TE) by asking [3]: “At what price would you...

• ...begin to think the item is so inexpensive that you
would not buy it because it would be poor quality?” (TC)

• ...think the item is a bargain - a great buy for the
money?” (C)

• ...think the item is getting expensive, but you still might
consider it?” (E)

• ...begin to think the item is too expensive to con-
sider?” (TE)

Participants were directed to indicate responses as whole
numbers in USD. A five-item, unipolar Likert scale question
also extracted purchasing interest. The wording of each
question originated from Qualtrics [23].

Social perceptions questionnaire: after each stimulus, the
Robotic Social Attributes Scale (RoSAS) captured participant

perceptions of warmth, competence, and discomfort subscales
by combining six component attributes for each subscale [24].
Participants rated each attribute on a six-point bipolar Likert
scale from “definitely not associated” to “definitely associ-
ated.” Valence and energy level from the circumplex model
of affect were acquired via participant association of the
robot with “happy” and “energetic.” The “happy” item also
contributed to the warmth subscale.

Free-response question: after both stimuli, a free-response
question asked “[w]hat part(s) of the products stood out
to you most or most strongly influenced your responses
throughout the survey?”

Demographic questionnaire: a final questionnaire recorded
participants’ age, gender, ethnicity, nationality, hometown,
profession, robotics experience, and musical experience.

E. Analysis

In this work, we focus on responses to the financial value
and social perceptions questionnaires, which were evaluated
for normality using Shapiro-Wilk tests. As all response
groups were found to be non-normal with p < 0.05, responses
were analyzed using Wilcoxon matched-pairs signed-rank
tests with a significance level of α = 0.05 [25]. To better
control for Type I errors, we divided the measures into
groups of price and purchasing interest for H1 and social
perceptions for H2 and applied Holm-Bonferroni corrections
to the Wilcoxon tests’ resulting p-values [26]. We report the
Wilcoxon test statistic W , the null hypothesis probability
p, and the effect size as rank-biserial correlations rrb. All
statistical analyses were conducted using jamovi [27], [28].

Responses to the financial value questions were fur-
ther analyzed through traditional and extended PSM anal-
ysis. In traditional PSM analysis, the four questions yield
empirical cumulative distribution functions for too cheap
(QTCh(P )), cheap (QCh(P )), expensive (QEx(P )), and too
expensive (QTEx(P )) [20]. The reverse cumulative distribu-
tion functions of too cheap (1−QTCh(P )) and expensive
(1−QEx(P )) are plotted along with QCh(P ) and QTEx(P )
to identify the intersections of interest:

• Marginal cheapness: 1−QTCh(P ) ∩QCh(P )

The lower bound of the acceptable price range.
• Marginal expensiveness: 1−QEx(P ) ∩QTEx(P )

The upper bound of the acceptable price range.
• Indifference price: 1−QEx(P ) ∩QCh(P )

• Optimal price: 1−QTCh(P ) ∩QTEx(P )
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Fig. 3: Responses to the value questionnaire. Boxplots include boxes from the 25th to the 75th percentiles, black lines for
medians, black diamonds for means, whiskers up to 1.5 times the inter-quartile range, and “+” marks to indicate outliers.
Original sound stimulus responses in purple boxplots are placed to the left and transformed sound stimulus responses in

green boxplots are placed to the right of each question gridline. Filled-in boxplot pairs indicate significant differences. The
“Price (USD)” y-axis is truncated for legibility.

In extended PSM analysis, log-logistic distributions are
regressively fit to QTCh(P ), QCh(P ), QEx(P ), and QTEx(P ).
These models are used to find frequency distribution func-
tions of interest:

• Bargain price: FB(P ) = QTCh(P )−QCh(P )
• Acceptable price: FA(P ) = QCh(P )−QEx(P )
• Premium price: FP (P ) = QEx(P )−QTEx(P )

The maximum of each function indicates the most likely
price associated with the distribution, which may offer more
precision when compared to traditional PSM analysis [20].

IV. RESULTS

A. Statistical Analysis Results

Wilcoxon matched-pairs signed-rank tests with Holm-
Bonferroni corrections for the five measures in H1 showed
that transformative sound led to significantly higher values of
the too cheap price (W = 256.5, p = 0.039, rrb = 0.374),
cheap price (W = 291.5, p = 0.012, rrb = 0.504),
expensive price (W = 397.5, p = 0.015, rrb = 0.444),
too expensive price (W = 267.0, p = 0.019, rrb = 0.484),
and purchasing interest (W = 50.5, p = 0.037, rrb = 0.563).
Figure 3 shows the response distributions.

For the five social perceptions measures included in H2,
Wilcoxon tests with Holm-Bonferroni corrections showed
that transformative sound led to a significant increase in
energy level (W = 131.0, p < 0.001, rrb = 0.866),
valence (W = 0.0, p < 0.001, rrb = 1.000), warmth
(W = 170.0, p < 0.001, rrb = 0.859), and competence
(W = 1180.5, p = 0.024, rrb = 0.289). Transformative
sound also significantly decreased discomfort (W = 2644.5,
p < 0.001, rrb = 0.517). Figure 4 shows the distributions of
the social perceptions results.

B. PSM Analysis Results

Traditional PSM analysis, shown in Fig. 5, yielded iden-
tical values for the marginal cheapness price (50 USD),
optimal price (100 USD), and marginal expensiveness
price (150 USD) across sound conditions. However, indif-
ference price was higher in the transformed sound condi-
tion (90 USD) than in the original sound condition (85 USD).

Extended PSM analysis found that adding transformative
sound increased bargain price (+3 USD, from 44 to 47 USD),
optimal price (+6 USD, from 83 to 89 USD), and premium
price (+6 USD, from 148 to 154 USD), as shown in Fig. 6.
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Fig. 4: Responses for the social perceptions questionnaire.
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Fig. 5: Traditional PSM empirical cumulative distribution functions for the original sound stimulus (above) and the
transformed sound stimulus (below). Vertical lines mark relevant intersections. The x-axis is truncated for legibility [29].
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associated with each line. The x-axis is truncated for legibility [29].



V. DISCUSSION

Statistical, traditional PSM analysis, and extended PSM
analysis all fully supported the expected responses for H1.
At all requested price levels, participants indicated higher
perceived value of robots with transformative sound. Ex-
tended PSM analysis produced an even clearer picture of
the magnitude of perceived price differences. Transformative
sound led to an increase of 3 USD for the bargain price
(6.8%) and 6 USD for both the acceptable price (7.2%)
and premium price (4.1%). The results corresponded closely
with the marginal cheapness, indifference price, and marginal
expensiveness as expected, since these points use the same
pairings of distributions. The extended PSM analysis method
helped alleviate round number bias and the effect of high
outliers through its use of log-logistic regressions.

Social perceptions questionnaire results fully supported H2
as well. In addition to replicating previously-recorded im-
provements to energy level, valence, warmth, and competence
from [1], this work’s analysis yielded an additional significant
reduction in discomfort. This replication confirms and further
validates the broad benefits of transformative robot sound.

A. Implications for Research Methods

Based on the overall pattern of results, we have a few
suggestions for the use and analyses of the PSM. First, while
the acceptable price frequency distribution function only
requires the results of the cheap and expensive questions,
the too cheap and too expensive questions may be important
to account for an underlying assumption of quality [20]. As
such, we recommend including all four PSM questions.

When evaluating robot features or comparing product pro-
files, PSM question responses should be tested for statistical
significance, as the traditional and extended PSM analyses do
not offer simple methods to determine significant differences.
However, the extended PSM analysis may offer better insight
into the magnitude of the difference between the distributions.
In particular, when the direct responses do not yield normal
distributions due to rounding bias, non-parametric statistical
tests (such as the Wilcoxon matched-pair rank-sum test)
and the traditional PSM analysis do not clearly specify the
magnitude of a significant difference. Thus, we recommend
a combination approach of testing the direct responses for
significance and using the extended PSM analysis to identify
the magnitude of differences.

A concern that may arise regarding the current study is
the inaccuracy between perceived and actual retail pricing
of the robot hardware, as the TurtleBot 2 is currently priced
between 716 and 1185 USD [30], which far exceeds the
values provided by participants. This mis-calibration is not
wholly unexpected; marketing research has found previously
that there are often issues when evaluating the value of
complex and unfamiliar goods [19], especially when factors
such as competitive effects are not readily available [18].

While these factors may be alleviated through differ-
ent study designs, such as targeted sampling of intended
customers or more comprehensive robot presentations, we
argue that this discrepancy does not undercut the usefulness

of the current approach. While the absolute values were
obviously incorrect for the given hardware, as the measures
here are relative comparisons, one might argue that any
absolute pricing bias present in a given participants’ ratings
is constant across all of their judgments. Thus, this approach
enables an estimation of how much transformative robot
sound increased relative perceived value when compared to
a non-transformative baseline, even in populations that might
not have much experience with robots. These results highlight
a potential strength of using the PSM in such HRI contexts
and adeptly sidesteps the normal pitfalls and biases from
sampling value solely from robotics researchers, who may
value research platforms such as the TurtleBot 2 more highly
than the average consumer. Therefore, we do recommend
using the PSM as a tool to compare the relative value of
robot features, as it enables quick and reliable identification
of increased relative value reliably and quickly, even for
populations that might not have a high degree of experience.
This capability can help advance the implementation of HRI
research on commercially-available robots.

However, robotics researchers and designers seeking ac-
curate absolute price evaluations may consider modified
procedures that better emulate market conditions, and provide
a known target price for reference that might help con-
strain participants’ estimations. Conjoint analysis and discrete
choice analysis methods [18], [19] are also other options.
It must be noted that these methods require significantly
more effort, as they necessitate a wider range of product
profiles in addition to more detailed information on the target
market to derive accurate pricing information. Accordingly,
we recommend caution when using the PSM as a tool to
evaluate the absolute value of a robot feature.

B. Key Strengths & Limitations

The primary strength of this work lies in adapting a well
established technique in marketing research and demon-
strates, with statistical rigor, its effectiveness for application
in HRI contexts. The work details and provides an example of
extended analysis for the PSM, which allows a more detailed
interpretation of the results. In addition, by successfully repli-
cating prior work in transformative robot sound, this work
also provides the opportunity to connect other psychological
constructs to the construct of value. Value may serve as a
useful high-level metric for HRI research, particularly when
robots introduce both positives and negatives to users, and
the PSM may serve as a useful instrument to measure value
and tease apart these instances.

Limitations to this work include the online video-based
survey format, which may not fully capture the effects of
in-person HRI due to issues such as lack of embodiment
and inconsistent audio or video playback. Also, the simple
a-b comparison format using one form of transformative
sound does not fully capture the entire potential sound design
space, nor was it designed to. The goal of the current paper
was to demonstrate a relationship between transformative
sound and perceived value, which to date has not been
demonstrated previously. However, adding additional sound



profiles may lead to a more nuanced appreciation of what
sound characteristics drive perceived value, which we aim to
investigate in future work. Furthermore, the cultural context
of the results is situated within that of the United States, and
perceived value might change in other cultural contexts. In
future work, we plan to deliberately recruit more diverse and
representative participants.

C. Conclusions

In this work, we incorporated the PSM into an online
survey and demonstrated that the addition of transformative
robot sound not only produces benefits found in prior work,
but also likewise provides a measurable increase in perceived
value. Both traditional and extended analyses of the PSM
confirmed this result. While estimates were not accurate
when compared to the current retail prices of the featured
robot, relative value comparisons still provided useful infor-
mation as a comparative metric across robots viewed with
transformative sound or not. Researchers and designers for
HRI-centric robots, which have faced recent difficulties in
achieving market viability, may benefit from the use of the
PSM to identify valuable features. This work established that
using the PSM to measure perceived value can help ensure
robot features—like transformative robot sound—contribute
to the overall value of robots.
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