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Nonverbal Sound in Human-Robot Interaction: a Systematic Review

BRIAN J. ZHANG and NAOMI T. FITTER, Collaborative Robotics and Intelligent Systems (CoRIS) Institute,

USA

Nonverbal sound offers great potential to enhance robots’ interactions with humans, and a growing body of research has begun to
explore nonverbal sound for tasks such as sound source localization, explicit communication, and improving sociability. However,
nonverbal sound has a broad interpretation and design space that can draw from areas such as machine learning, music theory,
and foley. We sought to identify and compare use cases and approaches for nonverbal sound in human-robot interaction through a
systematic review. A search of sound and robotics-related publisher databases yielded 148 peer-reviewed articles presenting systems,
studies, and taxonomies. Differences in taxonomy and overlap of terminology with adjacent research fields such as speech, gaze, and
gesture posed difficulties for the search, which we attempted to address through a multi-stage search process. Based on the reviewed
articles, we developed a pair of taxonomies using scientific communication principles and analyzed study designs and measures for
the creation of nonverbal robot sound. We discuss recommendations for the field, including the use of the new taxonomies; methods
for design, generation, and validation; and paths for future research. Roboticists may benefit from incorporating nonverbal sound as a
key component in multimodal human-robot interaction.

CCS Concepts: • Human-centered computing → Auditory feedback; Sound-based input / output; • Computer systems
organization→ Robotics.

Additional Key Words and Phrases: nonverbal sound, human-robot interaction, systematic review
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1 INTRODUCTION

The sense of hearing provides unique capabilities to humans, including detecting out-of-sight individuals and events,
receiving speech and nonverbal sounds, and directing attention toward environmental activity. While each of these
abilities has been examined by roboticists, with some research even going beyond human-relevant uses of sound into
animal-like echolocation [27], most work on robot sound has focused on speech. In this systematic review, we aimed to
examine nonverbal sound, defined as audible sound not involving or using words [92, 93], particularly in the realm of
human-robot interaction.

Prior threads of research in nonverbal sound for human-robot interaction have drawn inspiration from many
adjacent fields, framing, and goals, making it more difficult to unify all nonverbal sound work under a single umbrella.
The most direct predecessor to our work reviewed nonverbal sound explicitly produced by robots for human-robot
interaction [175], a categorization explained further in Section 3.1. Researchers seeking an up-to-date holistic picture of
how robots can employ nonverbal sound will benefit from our updated review, and researchers investigating nonverbal
sound will benefit from our proposed taxonomies.
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In this paper, we seek to answer the questions:

(1) How has nonverbal sound been used in human-robot interaction?
(2) What barriers exist in nonverbal robot sound research?
(3) What are the next steps for nonverbal robot sound research?

We conducted a systematic review to answer these questions, the methods of which are described in Section 2.
We begin with analyzing the terminologies and taxonomies used by the works in Section 3.1, which we synthesize
into a pair of taxonomies that we used to classify the systematic review results. Section 3.2 details human-centered
study methods in the robot sound space and examines overall strengths and weaknesses of past approaches. Section 4
discusses the implications and overall findings of the available research, as well as strengths, weaknesses, and future
work for the field.

2 METHODS

A closely related work by Yilmazyildiz et al. in 2016 provided an in-depth but non-systematic review of nonverbal sound,
particularly sounds closely related to speech [175]. We sought to provide an updated and broader look at the nonverbal
sound space through a systematic review, which we conducted in April 2022. The review methods incorporated terms
with awareness of the taxonomy laid out by Yilmazyildiz et al. [175], which is further explained in Section 3.1, as well
as recently used terms in the authors’ prior works [178, 180] and adjacent fields such as auditory display [52]. Our
review followed a four-step process: (1) a keyword search, (2) a relevance scoring process, (3) a manual title and abstract
review, (4) a full paper review. The step-by-step review results are provided in the supplementary material included
with this paper.

First, we conducted a keyword search for peer-reviewed conference and journal papers using the terms:

("human-robot interaction" OR "social robot") AND

(sound* OR soni* OR audi* OR aur* OR acoustic* OR music* OR utter*) AND

(nonverbal OR "non-verbal" OR "non-linguistic")

These keywords originated from (1) the context of the question (human-robot interaction); (2) various terms that
refer to sounds, such as sonic, auditory, aural, acoustic, music, and utterance; (3) qualifiers to guide the search results
toward nonverbal sounds rather than speech.

We searched the Association for Computing Machinery (ACM) Digital Library (663 results), Institute of Electrical
and Electronics Engineers (IEEE) Xplore (1608 results), Japan Science and Technology Agency J-STAGE (42 results),
SAGE Journals (93 results), Springer Link (1060 results), and Taylor & Francis Online (273 results). As some papers
have been published in sound- and music-focused venues rather than robotics, we performed an additional, simpler
search with the term “robot” in the proceedings of the International Conference on Auditory Display (55 results) and
Sound and Music Computing Conference (5 results) for a total of 3799 results. Abstracts were manually filled in for
Springer and Taylor & Francis results. Duplicates and non-articles that could be identified by title or DOI were removed,
resulting in 3610 items.

Given the large number of search results, we opted to conduct a replicable relevance scoring process that helped
us to identify and more closely review the most pertinent related works. Firstly, as this review focuses on nonverbal
sound in the context of robotics, all articles that did not include “robot” in the title or abstract were removed. Next, each
article’s title and abstract were searched for the number of instances of sound-related keywords used in the keyword
search (“sound,” “soni,” “audi,” “aur,” “acoustic,” “music, ” and “utter”), the count of which formed the positive component
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of the score, and the number of instances of adjacent interaction modalities that would indicate a focus on a topic other
than nonverbal sound (“gaz[e],” “gestur[e],” “speech, ” “speak,” “fac[e],” and “voice”), the count of which formed the
negative component of the score. The positive and negative components were summed, and the 349 articles with scores
of 0 or greater passed to the next step of the review process.

The remaining articles’ titles and abstracts were manually reviewed and sorted by a research assistant for relevance,
resulting in 127 “yes,” 52 “maybe,” and 170 “no” categorizations. Most “no” categorizations were papers that were focused
solely on verbal sound upon closer review. “Maybe” articles did not clearly indicate interaction modalities in the title
and abstract; these articles were reviewed in their entirety to check for apparent relevance. Of the 52 “maybe” articles,
25 were found to be relevant, receiving an updated “confirmed maybe” categorization. The 127 “yes” and 25 “confirmed
maybe” articles were read meticulously in full. After this closest review, a further 4 articles from the “yes” category
were excluded after closer review; two were found not to contain content on nonverbal sound in the full text, one
contained content but only from a separately included article, and one was not in English. Thus, the final set of papers
considered throughout the remainder of this review includes 148 articles.

3 RESULTS

The 148 articles considered in this review are organized chronologically in Table 1. Based on the nonverbal sound topics
of the reviewed articles, we developed new taxonomies of sound form and function and categorized each article as
described in Section 3.1. We extracted information on study methods for human perceptions of nonverbal robot sounds
in Section 3.2 as an extension of the study method review in [175].

Nonverbal sound in human-robot interaction is a young field that continues to grow over time, as seen in Figure 1.
Starting from 1996, the annual publication rate has generally increased with a peak in 2016 of 16 articles. This growth is
primarily driven by an increase in the number of articles on sound creation. Research on robots concurrently using
sound creation and perception, particularly for music, has also begun to appear in the literature in the last decade.

1996 2000 2004 2008 2012 2016 2020
Year
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Fig. 1. Number of articles published in each year from 1996 to 2022. Articles are separated by research topic into categories of sound
perception, sound creation, and both.
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Year Authors Title Function Form & Techniques

1996 T. Shibata et al. [136]
Emotional robot for intelligent system-artificial
emotional creature project

Sound source localization

1997 T. Shibata et al. [137]
Artificial emotional creature for human-machine
interaction

Sound source localization

1999 R. A. Brooks et al. [15] The Cog Project: Building a Humanoid Robot Sound source localization

1999 A. Camurri et al. [18]
EyesWeb-toward gesture and affect recognition in
dance/music interactive systems

Functional robot sound
Music; sonification;
personalization

2002 G. Johannsen [66]
Auditory display of directions and states for mobile
systems

Functional robot sound
Music; sonification;
auditory display

2002 H. G. Okuno et al. [107]
Social Interaction of Humanoid Robot Based on
Audio-Visual Tracking

Sound source localization

2003 T. Hermann et al. [53]
Interactive visualization and sonification for moni-
toring complex processes

Functional robot sound

Music;
artificial sounds;
natural sounds;
sonification

2003
H. G. Okuno and
K. Nakadai [109]

Realizing personality in audio-visually triggered
non-verbal behaviors

Sound source localization
Sound source separation

2003 H. G. Okuno et al. [108]
Design and Implementation of Personality of Hu-
manoids in Human Humanoid Non-verbal Interac-
tion

Sound source localization

2003 H. G. Okuno et al. [105]
Human–robot non-verbal interaction empowered
by real-time auditory and visual multiple-talker
tracking

Sound source localization

2003 H. G. Okuno et al. [104]
Real-time Sound Source Localization and Separation
based on Active Audio-Visual Integration

Sound source localization
Sound source separation
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Year Authors Title Function Form & Techniques

2005 M. Bennewitz et al. [7]
Towards a humanoid museum guide robot that in-
teracts with multiple persons

Sound source localization

2005 L. Błażejewski [17] Spatial Sound Localization for Humanoid
Sound source localization
Sound source separation

2006
D. Brock and
E. Martinson [13]

Exploring the utility of giving robots auditory
perspective-taking abilities

Sound perception (loudness)

2006 J. F. Gorostiza et al. [44]
Multimodal Human-Robot Interaction Framework
for a Personal Robot

Sound creation (unspecified) Music

2006
S. Yamada and
T. Komatsu [171]

Designing simple and effective expression of robot’s
primitive minds to a human

Emotional robot sound Electronic sounds

2007 E. C. Haas [46]
Integrating Auditory Warnings with Tactile Cues in
Multimodal Displays for Challenging Environments

Functional robot sound

2007 K. Kobayashi et al. [71]
Action Sloping as a Way for Users to Notice a Ro-
bot’s Function

Functional robot sound Electronic sounds

2007
M. P. Michalowski
et al. [95]

A Dancing Robot for Rhythmic Social Interaction Music recognition (for dance)

2007 V. M. Trifa et al. [152]
Real-time acoustic source Sound source localization
in noisy environments for human-robot multimodal
interaction

Sound source localization

2007
M. Yamamoto and
T. Watanabe [173]

Analysis by Synthesis of an Information Presenta-
tion Method of Embodied Agent Based on the Time
Lag Effects of Utterance to Communicative Actions

Paralanguage recognition

2008 N. A. Mirza et al. [97]
Developing social action capabilities in a humanoid
robot using an interaction history architecture

Sound perception (loudness)
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Year Authors Title Function Form & Techniques

2009 H. D. Kim et al. [68]

Human Tracking System Integrating Sound
and Face Sound source localization Using an
Expectation-Maximization Algorithm in Real
Environments

Sound source localization

2009
M. P. Michalowski
et al. [96]

Rhythmic attention in child-robot dance play
Music recognition (for dance)
Music recognition (for games)

2009 B. Robins et al. [122]

From Isolation to Communication: A Case Study
Evaluation of Robot Assisted Play for Children with
Autism with a Minimally Expressive Humanoid Ro-
bot

Music synthesis (physical) Instrumental music

2009 J. Solis et al. [141]
Implementation of an Auditory Feedback Control
System on an Anthropomorphic Flutist Robot In-
spired on the Performance of a Professional Flutist

Music synthesis (physical) Instrumental music

2009 A. Tapus [147]
Improving the Quality of Life of People with De-
mentia through the Use of Socially Assistive Robots

Music recognition (for games)

2009 A. Tapus et al. [148]
The role of physical embodiment of a therapist robot
for individuals with cognitive impairments

Music recognition (for games)

2010 C. Kroos et al. [72] The Articulated Head pays attention Sound perception (loudness)

2010 Y. Lin et al. [81]
Acoustical implicit communication in human-robot
interaction

Paralanguage recognition

2010
R. Nikolaidis and
G. Weinberg [102]

Playing with the masters: A model for impro-
visatory musical interaction between robots and
humans

Music synthesis (physical) Instrumental music

2010
R. Read and
T. Belpaeme [120]

Interpreting non-linguistic utterances by robots:
studying the influence of physical appearance

Emotional robot sound
Functional robot sound

Vocables;
artificial sounds
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2010 H. A. Samani et al. [127]
Towards a formulation of love in human - robot
interaction

Paralanguage recognition

2010
R. K. Sarvadevabhatla
et al. [130]

Extended duration human-robot interaction: Tools
and analysis

Sound source localization

2010 E. van der Heide [157]
Spatial Sounds (100dB at 100km/h) in the Context
of Human Robot Personal Relationships

Transformative robot sound
Functional robot sound

Electronic sounds

2011 H. Knight [69]
Eight Lessons Learned about Non-verbal Interac-
tions through Robot Theater

Paralanguage recognition

2011 A. Mertens et al. [94]
User focused design of human-robot interaction for
people suffering from unusual ailments

Functional robot sound
Music;
artificial sounds;
natural sounds

2011 H. G. Okuno et al. [106]
Robot Audition: Missing Feature Theory Approach
and Active Audition

Sound source localization
Sound source separation

2011 H. A. Samani et al. [126] An affective interactive audio interface for Lovotics
Paralanguage recognition
Emotional robot sound

Vocables

2011 M. Shiomi et al. [139] Field Trial of a Networked Robot at a Train Station Paralanguage recognition

2011
J. P. Tissberger and
G. Wersenyi [151]

Sonification Solutions for Body Movements in Re-
habilitation of Locomotor Disorders

Functional robot sound Music; sonification

2011 N. Yamakawa et al. [172]
Environmental Sound Recognition for Robot Audi-
tion Using Matching-Pursuit

Sound source recognition

2012 T. Araki et al. [2]
Online Object Categorization Using Multimodal In-
formation Autonomously Acquired by a Mobile Ro-
bot

Sound source recognition

2012 K. S. Chun et al. [24]
Novel musical notation for Emotional robot sound
expression of interactive robot

Sound creation (notation)
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2012 G. Hoffman [54]
Dumb robots, smart phones: A case study of music
listening companionship

Music recognition (for dance)

2012 M. Janvier et al. [61]
Sound-event recognition with a companion hu-
manoid

Sound source recognition

2012 A. Lim et al. [79]
A Musical Robot that Synchronizes with a Coplayer
Using Non-Verbal Cues

Music synthesis (physical)
Music recognition

Instrumental music

2012 N. Masuyama et al. [87]
Computational Intelligence for Human Interactive
Communication of Robot Partners

Sound source localization

2012 J. L. Oliveira et al. [110]
An active audition framework for auditory-driven
HRI: Application to interactive robot dancing

Music recognition (for dance)

2012 J. S. Park et al. [111]
Music-aided affective interaction between human
and service robot

Music recognition (for emotion)
Paralanguage recognition

2012
R. Read and
T. Belpaeme [116]

How to use non-linguistic utterances to convey emo-
tion in child-robot interaction

Emotional robot sound

2013
G. Hoffman
and K. Vanunu [56]

Effects of robotic companionship on music enjoy-
ment and agent perception

Music recognition (for dance)

2013 K. L. Koay et al. [70]

Exploring Robot Etiquette: Refining a HRI Home
Companion Scenario Based on Feedback from Two
Artists Who Lived with Robots in the UH Robot
House

Functional robot sound

2013 D. K. Limbu et al. [80] Affective social interaction with CuDDler robot
Paralanguage recognition
Emotional robot sound

2013 S. Pourmehr et al. [115]
A robust integrated system for selecting and com-
manding multiple mobile robots

Emotional robot sound
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2013
R. Read and
T. Belpaeme [117]

People interpret robotic non-linguistic utterances
Categorically

Emotional robot sound Electronic sounds

2013 K. P. Tee et al. [149]
Audio-visual attention control of a pan-tilt telepres-
ence robot

Sound source localization

2013 A. Vasilijevic et al. [158]
Comparative assessment of human machine inter-
faces for ROV guidance with different levels of sec-
ondary visual workload

Functional robot sound
Auditory display;
spatial sound

2013 J. von Zitzewitz et al. [160]
Quantifying the Human Likeness of a Humanoid
Robot

Consequential robot sound

2013
J. Y. Yang and
D. Kwon [174]

Feedback-based reasoning process for behavior se-
lection during long-term interaction

Emotional robot sound

2014 S. Bökesoy [16]
A Recursive Mapping System For Motion And
Sound In A Robot Between Human Interaction De-
sign

Functional robot sound
Sonification;
personalization

2014 K. Fischer et al. [31]
Initiating interactions in order to get help: Effects
of social framing on people’s responses to robots’
requests for assistance

Functional robot sound Electronic sounds

2014 K. Fischer et al. [30] To Beep or Not to Beep Is Not the Whole Question Functional robot sound Vocables; music

2014 S. E. Fotinea et al. [33] The annotation scheme of the MOBOT dataset Sound source localization

2014 M. Janvier et al. [62]
Sound representation and classification benchmark
for domestic robots

Sound source recognition

2014 M. Joosse et al. [67]
Sound over matter: the effects of functional noise,
robot size and approach velocity in human-robot
encounters

Transformative robot sound
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2014
E. Martinson
and V. Yalla [85]

Guiding computational perception through a shared
auditory space

Sound source localization

2014
L. McCallum and
P. W. McOwan [88]

Shut up and play: A musical approach to engage-
ment and social presence in Human Robot Interac-
tion

Music synthesis (physical) Instrumental music

2014
R. Read and
T. Belpaeme [118]

Non-linguistic utterances should be used alongside
language, rather than on their own or as a replace-
ment

Emotional robot sound Vocables

2014
R. Read and
T. Belpaeme [119]

Situational context directs how people affectively
interpret robotic non-linguistic utterances

Emotional robot sound Vocables

2014
M. Schwenk
and K. O. Arras [133]

R2-D2 Reloaded: A flexible sound synthesis system
for sonic human-robot interaction design

Emotional robot sound
Functional robot sound

Sonification

2014
F. Speth and
M. Wahl [142]

Specifying Rhythmic Auditory Stimulation for
Robot-assisted Hand Function Training in Stroke
Therapy

Functional robot sound Music

2014
R. Stęgierski and
K. Kuczyński [144]

The Perception of Humanoid Robot by Human Sound source localization

2015 L. Boccanfuso et al. [8]
Autonomously detecting interaction with an affec-
tive robot to explore connection to developmental
ability

Emotional robot sound Vocables; music

2015 G. Ince et al. [57]
Towards a robust drum stroke recognition system
for human robot interaction

Music synthesis (physical)
Music recognition

Instrumental music

2015
L. McCallum and
P. W. McOwan [89]

Face the Music and Glance: How Nonverbal Be-
haviour Aids Human Robot Relationships Based in
Music

Music synthesis (physical) Instrumental music

2015 H. Peng et al. [113] Robotic Dance in Social Robotics—A Taxonomy Music recognition (for dance)
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2015 E. Sandry [128]
Re-evaluating the Form and Communication of So-
cial Robots: The Benefits of Collaborating with Ma-
chinelike Robots

Emotional robot sound Vocables

2016 A. F. Azmin et al. [3]
HRI observation with My Keepon robot using Kan-
sei Engineering approach

Music recognition (for dance)
Emotional robot sound

2016 E. Cha et al. [21]
Nonverbal signaling for non-humanoid robots dur-
ing human-robot collaboration

Functional robot sound

2016
E. Cha and
M. Matarić [22]

Using nonverbal signals to request help during
human-robot collaboration

Functional robot sound Electronic sounds

2016 E. Florentine et al. [32]
Pedestrian NotificationMethods in Autonomous Ve-
hicles for Multi-Class Mobility-on-Demand Service

Functional robot sound Music

2016
T. Giannakopoulos
and G. Siantikos [38]

A ROS framework for audio-based activity recogni-
tion

Sound source recognition

2016 H. Hastie et al. [50]
Sound emblems for affective multimodal output of
a robotic tutor: a perception study

Emotional robot sound Vocables

2016 G. Hoffman et al. [55]
Robotic experience companionship in music listen-
ing and video watching

Music recognition (for dance)

2016 H. Kudo et al. [74] Behavior Model for Hearing-Dog Robot Sound source recognition

2016 S. Lakhmani et al. [75]
A Proposed Approach for Determining the Influ-
ence of Multimodal Robot-of-Human Transparency
Information on Human-Agent Teams

Functional robot sound Music

2016 M. C. Shrestha et al. [140]
Exploring the use of light and display indicators for
communicating directional intent

Functional robot sound

2016 A. Taheri et al. [145]
Social Robots and Teaching Music to Autistic Chil-
dren: Myth or Reality?

Music synthesis (physical)
Music recognition

Instrumental music
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2016
M. Tahon and
L. Devillers [146]

Towards a Small Set of Robust Acoustic Features
for Emotion Sound source recognition: Challenges

Paralanguage recognition

2016 G. Xia et al. [170]
Expressive Humanoid Robot For Automatic Accom-
paniment

Music synthesis (physical)
Music recognition (for games)

Instrumental music

2016 S. Yilmazyildiz et al. [175]
Review of Semantic-Free Utterances in Social Hu-
man–Robot Interaction

Emotional robot sound
Functional robot sound

Music; vocables

2016 C. Zaga et al. [176]
Help-giving robot behaviors in child-robot games:
Exploring Semantic Free Utterances

Functional robot sound Vocables

2016 R. Zhang et al. [181]
Musical Robots For Children With ASD Using A
Client-Server Architecture

Emotional robot sound Music; sonification

2017
R. Agrigoroaie
and A. Tapus [1]

Influence of Robot’s Interaction Style on Perfor-
mance in a Stroop Task

Sound creation Digital sounds

2017 J. Bellona et al. [6]
Empirically Informed Sound Synthesis Application
for Enhancing the Perception of Expressive Robotic
Movement

Transformative robot sound Sonification

2017 L. Dahl et al. [26]
Data-Driven Design of Sound for Enhancing the
Perception of Expressive Robotic Movement

Transformative robot sound Sonification

2017
J. Fernandez De Gorostiza
luengo et al. [29]

Sound Synthesis for Communicating Nonverbal Ex-
pressive Cues

Emotional robot sound
Music
Electronic sounds

2017 E. Jeong et al. [64]
Exploring the taxonomic and associative link be-
tween emotion and function for robot sound design

Emotional robot sound
Functional robot sound

Vocables;
Electronic sounds

2017 D. Moore et al. [98]
Making Noise Intentional: A Study of Servo Sound
Perception

Consequential robot sound Mechanical sounds

2017 E. Sandry [129] Creative Collaborations with Machines
Music synthesis (virtual)
Music recognition (for dance)
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2017 M. Shahab et al. [134]
Social Virtual Reality Robot (V2R): A Novel Concept
for Education and Rehabilitation of Children with
Autism

Music synthesis (virtual)
Music recognition (for games)

Music

2017 H. Tennent et al. [150]
Good vibrations: How consequential sounds affect
perception of robotic arms

Consequential robot sound Mechanical sounds

2018 G. Bolano et al. [9]
Transparent Robot Behavior by Adding Intuitive
Visual and Acoustic Feedback toMotion Replanning

Functional robot sound

2018 E. Cha et al. [20]
Effects of Robot Sound on Auditory Sound source
localization in Human-Robot Collaboration

Transformative robot sound Electronic sounds

2018 E. Frid et al. [36]
Perception Of Mechanical Sounds Inherent To Ex-
pressive Gestures Of A Nao Robot - Implications
For Movement Sonification Of Humanoids

Consequential robot sound
Emotional robot sound

2018 L. Grama and C. Rusu [45] Adding audio capabilities to TIAGo service robot
Sound source localization
Sound source recognition

2018 W. He et al. [51]
Deep Neural Networks for Multiple Speaker Detec-
tion and Sound source localization

Sound source localization

2018 D. Löffler et al. [82]
Multimodal Expression of Artificial Emotion in So-
cial Robots Using Color, Motion and Sound

Emotional robot sound Electronic sounds

2018
L. McCallum and
P. W. McOwan [90]

Extending Human–Robot Relationships Based in
Music With Virtual Presence

Music synthesis (physical) Instrumental music

2018 A. Nijholt [101] Robotic Stand-Up Comedy: State-of-the-Art Sound perception (loudness)

2018
K. Shibuya and
H. Ishimoto [138]

Design Principles of Loudness to Express Bright and
Dark Timbres for Violin-playing Robot

Music synthesis (physical) Instrumental music

2018 G. Trovato et al. [153]
The Sound or Silence: Investigating the Influence
of Robot Noise on Proxemics

Transformative robot sound Music
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2018 K. Weber et al. [161]
How to Shape the Humor of a Robot - Social Behav-
ior Adaptation Based on Reinforcement Learning

Sound perception (loudness)
Emotional robot sound

Personalization

2018 K. Weber et al. [162]
Real-Time Adaptation of a Robotic Joke Teller Based
on Human Social Signals

Sound perception (loudness)
Emotional robot sound

2019
M. R. Frederiksen
and K. Stoey [34]

Augmenting the audio-based expression modality
of a non-affective robot

Emotional robot sound Vocables

2019 P. Jin et al. [65]
A-EXP4: Online Social Policy Learning for Adaptive
Robot-Pedestrian Interaction

Functional robot sound

2019
L. Martínez-Villaseñor
and H. Ponce [86]

A concise review on sensor signal acquisition and
transformation applied to human activity recogni-
tion and human–robot interaction

Sound source recognition

2019 H. Ritschel et al. [121]
Personalized Synthesis of Intentional and Emotional
Non-Verbal Sounds for Social Robots

Functional robot sound
Music;
personalization

2019 S. Rossi et al. [124]
Evaluating the Emotional Valence of Affective
Sounds for Child-Robot Interaction

Emotional robot sound Vocables

2019 R. Savery et al. [132]
Establishing Human-Robot Trust through Music-
Driven Robotic Emotion Prosody and Gesture

Emotional robot sound Vocables

2019 A. Ueno et al. [156]
Impression Change on Nonverbal Non-Humanoid
Robot by Interaction with Humanoid Robot

Functional robot sound Electronic sounds

2020
L. Boos and
L. Moshkina [11]

Conveying Robot State and Intent Nonverbally in
Military-Relevant Situations: An Exploratory Sur-
vey

Consequential robot sound
Functional robot sound

Vocables
Electronic sounds

2020
S. Chakraborty
and J. Timoney [23]

Robot Human Synchronization for Musical Ensem-
ble: Progress and Challenges

Music synthesis (physical)
Music recognition

Instrumental music
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2020 W. K. N. Hansika et al. [48]
AuDimo: A Musical Companion Robot to Switching
Audio Tracks by Recognizing the Users Engagement

Music recognition (for dance)

2020
T. Izui and
G. Venture [59]

Correlation Analysis for Predictive Models of Robot
User’s Impression: A Study on Visual Medium and
Mechanical Noise

Consequential robot sound

2020 S. Jaiswal et al. [60]
Image based Emotional State Prediction from Mul-
tiparty Audio Conversation

Paralanguage recognition

2020
A. B. Latupeirissa
et al. [77]

Exploring emotion perception in sonic HRI Emotional robot sound Electronic sounds

2020
J. Okimoto and
N. Niitsuma [103]

Effects of Auditory Cues on Human-Robot Collabo-
ration

Functional robot sound Electronic sounds

2020 H. R. M. Pelikan et al. [112]
"Are You Sad, Cozmo?": How Humans Make Sense
of a Home Robot’s Emotion Displays

Emotional robot sound Vocables

2020 J. Vilk and N. T. Fitter [159]
Comedians in Cafes Getting Data: Evaluating Tim-
ing and Adaptivity in Real-World Robot Comedy
Performance

Paralanguage recognition

2020 H. Wolfe et al. [169]
Singing Robots: How Embodiment Affects Emo-
tional Responses to Non-Linguistic Utterances

Emotional robot sound Computer music

2021 J. A. Barnes et al. [4]

Child-Robot Interaction in a Musical Dance Game:
An Exploratory Comparison Study between Typ-
ically Developing Children and Children with
Autism

Music recognition (for dance)
Music recognition (for games)

2021 F. Ciardo et al. [25]
Effects of erring behavior in a human-robot joint
musical task on adopting Intentional Stance toward
the iCub robot

Music synthesis (physical)
Music recognition (for games)

Instrumental music
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2021 J. Fan et al. [28]
Field Testing of Ro-Tri, a Robot-Mediated Triadic
Interaction for Older Adults

Sound source localization

2021 G. Ince et al. [58]
An audiovisual interface-based drumming system
for multimodal human–robot interaction

Music synthesis (physical)
Music recognition (for games)

Instrumental music

2021 M. Krzyżaniak [73] Musical robot swarms, timing, and equilibria
Music synthesis (physical)
Music recognition (for games)

Instrumental music

2021 J. S. Lee et al. [78]
Non-Verbal Auditory Aspects of Human-Service
Robot Interaction

Transformative robot sound
Emotional robot sound
Functional robot sound

2021 L. Muscar et al. [99]
Sound Classification by the TIAGo Service Robot
for Healthcare Applications

Sound source recognition

2021
T. R. P. Pessanha
et al. [114]

Virtual Robotic Musicianship: Challenges and Op-
portunities

Music synthesis Instrumental music

2021 R. Savery et al. [131]
Emotion Musical Prosody for Robotic Groups and
Entitativity

Emotional robot sound Vocables

2021
S. C. Steinhaeusser
et al. [143]

Comparing a Robotic Storyteller versus Audio Book
with Integration of Sound Effects and Background
Music

Emotional robot sound Music

2021 B. J. Zhang et al. [180]
Bringing WALL-E out of the Silver Screen: Under-
standing How Transformative Robot Sound Affects
Human Perception

Transformative robot sound
Emotional robot sound

Vocables;
mechanical sound;
electrical sound

2021 B. J. Zhang et al. [178]
Exploring Consequential Robot Sound: Should We
Make Robots Quiet and Kawaii-et?

Consequential robot sound
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2022 E. Frid and R. Bresin [35]

Perceptual Evaluation of Blended Sonification of
Mechanical Robot Sounds Produced by Emotionally
Expressive Gestures: Augmenting Consequential
Sounds to Improve Non-verbal Robot Communica-
tion

Consequential robot sound
Transformative robot sound

Computer music

2022 M. A. Maheux et al. [83] T-Top, a SAR Experimental Platform
Sound source localization
Sound source recognition
Sound source separation

2022 U. Maniscalco et al. [84]
Bidirectional Multi-modal Signs of Checking
Human-Robot Engagement and Interaction

Sound source localization
Sound perception (loudness)
Functional robot sound

Electronic sounds

2022 M. Shahab et al. [135]
Utilizing social virtual reality robot (V2R) for music
education to children with high-functioning autism

Music synthesis (virtual)
Music recognition (for games)

Instrumental music

Table 1. Articles included in the review, arranged by year of publication and alphabetical order of the first author surname. The “Function” column labels each article with a
relevant topic from the taxonomy of function described in Section 3.1, while the “Form & Technique” column indicates the type of sound creation in relevant papers that
sufficiently describe the sound. Table 4, which organizes these works by “Function,” is located in the appendix.
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3.1 Terms and Taxonomies

The words used to categorize nonverbal sound in human-robot interaction have varied greatly between works. Some
authors have borrowed from adjacent fields, such as music, product sound design, auditory display, and computational
linguistics; other authors have created terms that they believe best suit their topic of study. The quest to taxonomize
nonverbal sound poses extra difficulty due to the wide range of forms that sound may take. However, a lack of common
terms also creates problems for research, as descriptions of design and implementation methods for nonverbal sound
do not effectively enable other researchers to replicate prior work. Alternatives for sharing research, such as providing
software or sound files, remain rare; many papers on sound do not provide such files, provide files that have since become
unavailable, or only provide such files in a form that includes environmental background noise (e.g., in video-based
stimuli). While these issues may be alleviated by increasing trends of including open-source tools and multimedia
attachments with academic works, researchers will benefit from an imminent common and accessible set of terms for
the field.

We examined prior efforts to taxonomize nonverbal sound in human-robot interaction with a particular emphasis on
scientific communication, as this field lies at the intersection of several disciplines such as engineering, social science,
and musicology. Thus, terms have a particular risk of becoming jargon, as terms with roots from one discipline may act
as jargon to another. Based on these prior efforts and the authors’ experiences, we developed new taxonomies for form
and function, with associated recommendations on using these new terms for future research.

3.1.1 Previous Taxonomies. We searched the reviewed articles for explicit taxonomies of nonverbal sound, the results
of which are presented in Table 2. Taxonomies ranged in purpose from categorizing nonverbal sound in the context
of a study to categorizing the topics of articles within a literature review. We considered each taxonomy within the
context of broader taxonomies for sound, such as from psychoacoustics [10, 37], product sound design [76], and auditory
display [52]. The taxonomies generally fell into two categories: form, where nonverbal sounds were categorized based
on how they sound, and function, where nonverbal sounds were categorized based on their purpose.

Form-based taxonomies offer visual information on the auditory nature of a sound; they describe what the sound
sounds like. These taxonomies can accomplish this task in several ways; one such way is by through associations.
For instance, Mertens et al. uses sounds from Microsoft Windows [94], which provides a suite of earcons (“a brief,

Authors Categorization

Mertens et al. [94] Everyday, nature, Microsoft Windows, jingles
Janvier et al. [61] Prosodic, moving, cooking, alarms
Janvier et al. [62] Kitchen, office, nonverbal, speech
Yilmazyildiz et al. [175] Semantic-free utterances (gibberish speech, paralinguistic utterances, musical utter-

ances, non-linguistic utterances)
Jeong et al.[64] Robot sound design (functional (platform, monitoring, alerting, feedback), emotional

(positive, neutral, negative))
Lee et al. [78] Audible communication (auditory icons/earcons, ambient background sound, an-

thropomorphic intent notifiers)

Table 2. Articles that propose a taxonomy for nonverbal robot sound, with a brief description of the structure of the taxonomy.
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distinctive sound that represents a specific item or event” [163]) that may be easily recalled by Microsoft Windows
users. Other associations, such Janvier et al.’s cooking and kitchen, may also lead to common understandings [61, 62].
Sound taxonomies from psychoacoustics do already offer a more comprehensive set of associations [10]. However, a
key weakness of categorizing sounds through association becomes broader and more esoteric categories. Descriptors
such as nature and office may have variable meaning depending on the reader’s geographical location and place of work.
In each of these articles, the authors further describe each sound to help account for this concern, though descriptions
of form can still suffer from lack of clarity. Mertens et al. also categorized sounds as jingles, “memorable short song[s],
or in some cases a snippet of a popular song” [164], that include too many sounds for complete descriptions. Overall,
taxonomies of form using associations alone do not provide a clear and consistent depiction of sounds.

Yilmazyildiz et al.’s previous review proposed a taxonomy of form based on definitions rather than association.
This taxonomy provides an alternative, more specific term for nonverbal sound: semantic-free utterances. Semantic-
free utterances is divided into four forms: gibberish speech (“vocalizations of meaningless strings of speech sounds”),
paralinguistic utterances (“stand-alone vocal events”), musical utterances (music and music theory-based sounds), and
non-linguistic utterances (other nonspeech-like sounds) [175]. More generally, paralanguage is “the non-verbal elements
of speech...such as pitch, volume, and intonation” [165]. Of these forms, non-linguistic utterances has seen the most
use, with roots from the works of two of Yilmazyildiz’s co-authors, Read and Belpaeme. Read and Belpaeme coined
non-linguistic utterances, though in older work it also included terms might be categorized as gibberish speech or
paralinguistic utterances, such as human nonverbal utterances [120] and sounds produced by the characters Chewbacca
and WALL-E [116]. A more specific definition for non-linguistic utterances was provided in [118]: “robotic sounds
made by synthetic social agents, rather than utterances that are designed to resemble natural speech, such as artificial
languages or gibberish speech.”

As the most established taxonomy, semantic-free utterances and its components have been referenced in several
of the reviewed articles [36, 36, 64, 124, 169, 176]. However, the terms have already experienced deviation from their
intended use. Small deviations include changes to the terms while maintaining the intended designations, such as
changing non-linguistic utterances to “non-linguistic functional sound” [64] or “non-linguistic auditory cues” [169]
and changing paralinguistic utterances to “para-linguistic vocalizations” [124] or simply “paralanguage” [169]. Larger
deviations stem from uncertainty over how speech-like or musical non-linguistic utterances can be, which may cause
miscategorization of sounds [169]. These deviations point toward a root issue: the use of jargon. This taxonomy
primarily uses terms from linguistics (semantic-free, paralinguistic, non-linguistic), which provides great specificity in
at the cost of inaccessibility to readers unfamiliar with linguistics. Furthermore, these multi-part terms often become
abbreviations (semantic-free utterance as SFU, gibberish speech as GS, etc.). Abbreviations are also a form of jargon that
can be particularly detrimental to readers. With the exception of the most widely-known abbreviations (e.g., SCUBA,
LASER), readers must parse and re-reference abbreviations throughout the text to reconstruct their meaning; readers
meeting unfamiliar abbreviations may also feel alienated and less interested [47]. These concerns spurred us to pursue
updated terms.

Function-based taxonomies, on the other hand, offer information on the intended purpose of sounds, which may
help researchers connect and collaborate over similar goals. Lee et al. propose a taxonomy that blends both form and
function, separating nonverbal robot sound into auditory icons or earcons (“cues, notifications, informational alerts,
feedback”), ambient background sound (“to indicate that a robot is nearby, or to establish mood and situation”), and
anthropomorphic intent notifiers (“specifically to relate to humans in the vicinity”) [78]. While each category contains
information on form, the categorization distinguishes itself with different functions. However, the taxonomy is not as
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comprehensive when compared to Yilmazyildiz et al., as the the combination of form and function excludes certain
combinations. For instance, some forms of sonification (the process of “map[ping] data to sound” [166]) may lead to
ambient background sound that provides informational alerts or feedback, creating a cross-category sound. Directly
combining form and function may lead to these types of discrepancies.

Jeong et al. propose a purely function-based taxonomy with a simple separation: emotion and functional sound [64].
This article notes an important concern for taxonomies of function: sounds designed for a particular purpose may be
interpreted by the listener differently or in more dimensions than intended. In particular, functional sounds may have
emotional content. However, for individuals researching nonverbal sound, the intended function is more important to
indicate, as the resulting effect can be framed as a measure of the sound’s effectiveness in its intended function. Another
concern for Jeong et al.’s taxonomy is that these nonverbal sounds do not encompass the entirety of nonverbal robot
sound, as robots also produce consequential sound, or sound generated by the operating of the robot itself [76]. These
sounds may not serve any particular emotional or functional role, but still may be designed and affect the human-robot
interactions. Furthermore, the addition of transformative sound, intentionally produced sound intended to alter a
robot’s original sound profile, may combine with consequential sound as an alternative to produce a new overall sound
profile without changes to the physical design of the robot [180].

Overall, taxonomies of form and function serve useful but separate purposes. The existing taxonomies leave some
concerns, particularly as fewworks succeed in offering both types of categorization. Thus, we developed new taxonomies
for the field that aim to alleviate these concerns.

3.1.2 Proposed Taxonomy. We propose new taxonomies of form and function, designed to be used in conjunction with
one another to provide clear descriptions of nonverbal sound for future articles. Firstly, a new taxonomy of function
for sound, shown in Figure 2, identifies the current major research focuses found through the systematic review. This
taxonomy provides overarching structure by dividing the role of sound relative to a robot into sound perception and
sound creation, which are further divided into implicit and explicit.

Implicit and explicit perception carry different meanings than implicit and explicit creation. Explicit sound perception
concerns the properties of the sound itself, such as sound pressure level, frequencies, duration, or location, while implicit
sound perception uses the sound to infer characteristics of something else, such as the object or interaction producing
the sound. On the other hand, implicit and explicit in sound creation follows the convention of implicit and explicit
communication in human-robot interaction; explicit sound creation deliberately conveys information with a clear
associated intent for the listener to receive said information, while implicit sound creation does not necessarily convey
information, but the listener may infer information from the sound anyways [39]. Rather than binary classification, the
implicit and explicit categorization should be viewed more as a continuous scale, as shown in Figure 2, and functions of
sound also do not occupy a single point on the scale. To illustrate this, we include speech within the taxonomy alongside
paralanguage, as all speech contains paralanguage. While speech recognition (still beyond the scope of the review, but
included as an easy-to-understand reference point) is a clear example of implicit sound perception, as it focuses on the
linguistic representation of sounds and their meaning, paralanguage recognition is a clear example of explicit sound
perception, as it focuses on auditory features such as loudness and pitch, and so the two concepts combined fall at the
center of the scale as the concepts both apply to perception of speech. Similarly, transformative robot sound may only
implicitly communicate, such as by simply amplifying consequential robot sounds to increase the noticeability of the
robot, or be designed to explicitly communicate, as is the intent of blended sonification (“sonifications that blend into
the users’ environment without confronting users with any explicitly perceived technology” [155]). Thus, these implicit
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Functions of Sound in Human-Robot Interaction

Perception Creation

Implicit Explicit Implicit Explicit

Sound Source 
Localization & 

Separation

Sound-based 
Localization 
& Mapping

Sound Source 
Recognition

Speech & 
Paralanguage 
Recognition

Consequential 
Robot Sound

Speech & 
Music 

Synthesis

Transformative 
Robot Sound

Functional 
Robot Sound

Emotional 
Robot Sound

Music 
Recognition

Fig. 2. The taxonomy of function for sound in human-robot interaction, with current major functions placed within the taxonomy.
This taxonomy is robot-centric, or from the perspective of the robot; that is, “perception” refers to the robot’s perception of sound
and “creation” refers to sounds that the robot creates. The location of each function on the implicit-explicit scales acts as a general
guideline rather than a specific categorization.

to explicit scales can accommodate novel functions of sound in human-robot interaction, placing them in a holistic
picture of the field.

From the reviewed articles, we identified the following functions and general definitions:

• Sound source recognition: identifying the objects and interactions that produce sounds in a robot’s environ-
ment.

• Paralanguage recognition: extracting information from speech based on paralanguage or identifying nonver-
bal vocal sounds.

• Music recognition: extracting musical information from sound, such as instruments, notes, and tempo.
• Sound source localization: identifying the location of origin of a sound in a robot’s environment.
• Sound source separation: identifying that sounds have different origins or splitting the audio signal of sounds

with different origins.
• Consequential robot sound: sound made by the operation of the robot.
• Transformative robot sound: sound made to mix with or act as consequential robot sound with the intent to

change the sound profile of the robot.
• Functional robot sound: sound made to explicitly convey non-emotional information from the robot.
• Emotional robot sound: sound made to explicitly convey emotions from the robot.
• Music synthesis: the creation of music either through electronics or through physical instruments.

While most of the sound perception categories are firmly established, the categorization of sound creation arises
from a combination of Jeong et al.’s taxonomy and product sound design. As previously mentioned, Jeong et al.
proposed a taxonomy of emotional and functional sound [64]. Jeong et al.’s taxonomy accommodates sound for explicit
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Forms & Associations of Sound in Human-Robot Interactions

Speech

Voice Music

Human Animal Instrumental

Artificial

Vocables

Computer

“Hmm…” “Woof!” Violin Pure tone
sequences

Mechanical

Natural

Electronic Interactions

Gearbox Beeps, 
white noise

Fig. 3. The taxonomy of form for sound in human-robot interaction, with several examples of sounds and sound origins. Some
descriptors, such as “vocables,” can be used separately, while others must be combined with “sound” as in “mechanical sound” or
with each other as in “computer music.”

communication, but omits implicit created sounds such as consequential sound from product sound design [76], which
has been examined in several of the reviewed articles. Furthermore, the addition of consequential sound provides
an opportunity to differentiate emotional and functional sound further, as sounds created to complement, mask, or
otherwise transform consequential sound can be separated into transformative robot sound, also a topic found within
the review.

Figure 2 further includes sound-based localization and mapping, the use of sound to determine the position of the
robot or objects in the environment. Sound-based localization and mapping often uses ultrasound (sound above the
range of human hearing) and is thus out of the scope of sound in human-robot interaction. We include sound-based
localization and mapping in the overall taxonomy for reference. Table 4 in the appendix organizes the reviewed articles
by function, rather than chronological order.

The taxonomy of form complements the taxonomy of function for articles on sound creation by providing more
specific descriptions of sounds. As with the taxonomy of function, we examined terms currently in use from the
perspective of scientific communication. The taxonomy of form, presented in Figure 3, combines and rearranges sound
taxonomies [10, 37] to better suit robot sound and adds vocable (“(linguistics) a word or utterance especially with
reference to its form rather than its meaning; (music) a syllable or sound without specific meaning, used together with
or in place of actual words in a song” [167]) as an alternative for gibberish speech and paralinguistic utterances from
Yilmazyildiz et al.’s taxonomy [175].

The introduction of vocable stems from the need for a term to describe vocalizations that do not form words or speech.
Previous candidates have included Yilmazyildiz et al.’s gibberish speech, paralinguistic utterances, and non-linguistic
utterances [175]. However, as previously noted, these terms best suit individuals with a background in linguistics and
may act as jargon for others, particularly when abbreviated. In comparison, vocable shares etymological roots with
common words such as vocal and vocabulary (voco from Latin, meaning “I call” [167]) and is short enough to not be
abbreviated. Lastly, vocable is an established term with greater popularity in both English books and global search
trends according to Google Books Ngram Viewer and Google Search Trends [40, 42]. The term “vocables” correlates
most closely to paralinguistic utterances and may also be used to describe animal vocalizations (“animal vocables”).
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Gibberish speech may also be described as vocables, though gibberish speech is composed of a series of vocables; thus,
the “gibberish speech” term can provide additional detail if desired.

Another key change in the taxonomy concerns the use of music and the exclusion of musical. This distinction is
important, as many non-music sounds still draw inspiration from music theory. As an example, Fischer et al. created
sounds based on the spoken phrase “excuse me, please” with different intonation. Fischer et al. converted the intonation
into beeps (electronic sounds) and presented the beeps in music notation and noted their musical relationship in terms
of semitones [30]. Thus, these sounds could be thought of as musical, but were intended to emulate speech, not music.
In the presented taxonomy, Fischer et al.’s sounds would be categorized as electronic sounds, which most closely match
the final product. We recommend describing robot sound as music primarily for instrumental music and extended
sequences of music theory-based electronic sounds.

Noise (“sound, especially one that lacks an agreeable quality or is noticeably unpleasant or loud; any sound that is
undesired or interferes with one’s hearing of something” [91]) may also cause confusion when used to describe useful
sound (e.g., “functional noise” [67]). We recommend that sounds be described as noise only when undesirable or in
reference to specific forms of noise, such as white, pink, or Brownian noise, terms established in signal processing that
also describe audio signals [168]. Another use of the term appears in ego-noise, the undesired consequential sound when
considering sound perception [110]. While self-noise (the audio signal measured by a microphone that is not caused by
other sound sources [100]) is more popular that ego-noise in both English books and global search trends according to
Google Books Ngram Viewer and Google Search Trends [41, 43], ego-noise seems established in the literature for sound
perception by robots.

Natural sounds refer to sounds that, regardless of production method, evoke nature. For instance, water drops or
pouring, footsteps on grass, and the crackling of leaves or fire all fall under natural sounds. Natural sounds do not
appear frequently in the literature, but may feature more widely as robots increasingly enter the outdoors. At the time,
it may be valuable to introduce further distinctions within this category of sound.

3.1.3 Usage Recommendations. The taxonomy of function can help researchers find articles with similar goals. Articles
on nonverbal sound in human-robot interaction should mention the associated function(s) of sound in unabbreviated
form as early and often as possible, preferably within the title or abstract of the work. Within the full text of the
paper, limited shortening is reasonable. For instance, an article on sound source localization that does not include other
localization topics, such as simultaneous localization and mapping, may reasonably shorten the full function name
to “sound localization” or simply “localization.” In the same vein, transformative robot sound may be condensed to
“transformative sound.” We strongly recommend against the use of abbreviations into acronyms and initialisms, which
often require readers to repeatedly find the first mention of the relevant term and alienate readers new to the field [47].
When acronyms or initialisms are required for space, such as within a figure, figure captions should link the full term
and the abbreviation together. Until the research community of robot sound establishes a common vocabulary, these
steps are essential for unifying the field.

The taxonomy of form should be used for concise description of sounds. Similarly to the taxonomy of function,
articles on robot sound creation should mention the associated form(s) of sound as early as possible, preferably in the
title or abstract of the work. Within the full text of the paper, the taxonomy of form should be used for quick references
to the sounds, such as to differentiate between two sound designs (e.g., to contrast sound designs using vocables or
electronic sound). However, describing sounds with this taxonomy does not replace a more detailed explanation of the
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sound design methods and form. We strongly recommend that authors make created robot sounds available to readers
in raw audio form, in addition to in the context of study stimuli.

3.2 Study Methods for Nonverbal Sound Creation

As investigations into nonverbal sound creation have progressed, study methods have correspondingly evolved. In this
work, we aimed to provide an updated view of study methods for nonverbal sound creation from Yilmazyildiz et al.’s
review. Instead of reporting the same metrics, we focused on the study designs. Table 3 details the results of our search.
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Year Title Robot Measures
Statistical
Testing

Sound
Comparison

Multimodal
Comparison

Study Design

2002
Auditory display of directions and
states for mobile systems [66]

None
Objective &
subjective

No
Sound case studies;
Between sounds

No
In-person;
computer-based;
within-subjects

2003
Interactive visualization and sonifi-
cation for monitoring complex pro-
cesses [53]

Robot arm
Objective &
subjective

No Between sounds No
In-person;
computer-based;
within-subjects

2007
Action Sloping as a Way for Users
to Notice a Robot’s Function [71]

AIBO Objective Yes Presence of sound Yes
In-person;
experimental;
between-subjects

2007

Analysis by Synthesis of an Informa-
tion Presentation Method of Embod-
ied Agent Based on the Time Lag
Effects of Utterance to Communica-
tive Actions [173]

None Subjective No Between sounds No
In-person;
experimental;
within-subjects

2010
Interpreting Non-Linguistic Utter-
ances by Robots: Studying the Influ-
ence of Physical Appearance [120]

NAO, AIBO Subjective Yes Between sounds No

Online survey;
image-based
AND sound-based;
within-subjects

2011
An Affective Interactive Audio In-
terface for Lovotics [126]

Lovotics Subjective Yes Between sounds No
In-person;
experimental;
within-subjects

2011
User focused design of human-
robot interaction for people suffer-
ing from unusual ailments [94]

None
Objective &
subjective

Yes Between sounds No
In-person;
experimental;
within-subjects
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Year Title Robot Measures
Statistical
Testing

Sound
Comparison

Multimodal
Comparison

Study Design

2012
How to use non-linguistic utter-
ances to convey emotion in child-
robot interaction [116]

NAO Subjective No Between sounds No
In-person;
experimental;
within-subjects

2013

Comparative assessment of human
machine interfaces for ROV guid-
ance with different levels of sec-
ondary visual workload [158]

None Objective No Presence of sound Yes
In-person;
experimental;
within-subjects

2013
People interpret robotic non-
linguistic utterances Categori-
cally [117]

NAO Subjective Yes Between sounds No
In-person;
experimental;
within-subjects

2013
Quantifying the Human Likeness of
a Humanoid Robot [160]

Bioloid Subjective No Presence of sound No
Online survey;
video-based;
within-subjects

2014

Initiating interactions in order to
get help: Effects of social framing
on people’s responses to robots’ re-
quests for assistance [31]

PR2
Objective &
subjective

Yes
Between verbal
and nonverbal

No
In-person;
experimental;
between-subjects

2014

Non-Linguistic Utterances Should
be Used Alongside Language,
Rather than on their Own or as a
Replacement [118]

NAO Subjective Yes
Between verbal
and nonverbal

No
Online survey;
video-based;
within-subjects

2014
Situational Context Directs How
People Affectively Interpret Robotic
Non-Linguistic Utterances [119]

NAO Subjective Yes
Between sounds,
including none

No
Online survey;
video-based;
within-subjects
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Year Title Robot Measures
Statistical
Testing

Sound
Comparison

Multimodal
Comparison

Study Design

2014

Sound over Matter: The Effects of
Functional Noise, Robot Size and
Approach Velocity in Human-Robot
Encounters [67]

Giraff Subjective Yes Between sounds No
In-person;
experimental;
between-subjects

2014

Specifying Rhythmic Auditory Stim-
ulation for Robot-assisted Hand
Function Training in Stroke Ther-
apy [142]

None Subjective Yes
Between sounds,
including none

No
In-person;
experimental;
within-subjects

2014
To Beep or Not to Beep Is Not the
Whole Question [30]

Care-O-bot Subjective Yes
Between sounds,
including none

No
In-person;
experimental;
between-subjects

2016
Exploring the use of light and dis-
play indicators for communicating
directional intent [140]

Custom
mobile
robot

Subjective Yes Presence of sound Yes
In-person;
experimental;
within-subjects

2016
Help-giving robot behaviors in
child-robot games: Exploring Se-
mantic Free Utterances [176]

Festo
Robotino

Objective Yes
Between sounds,
including none

No
In-person;
experimental;
between-subjects

2016
Sound Emblems for Affective Multi-
modal Output of a Robotic Tutor: A
Perception Study [50]

NAO Subjective Yes
Between sounds,
including none

No
Online survey;
sound-based;
mixed methods

2016
Using nonverbal signals to request
help during human-robot collabora-
tion [22]

Ava
Objective &
subjective

Yes
Between sounds,
including none

No
In-person;
experimental;
within-subjects

2017
Data-DrivenDesign of Sound for En-
hancing the Perception of Expres-
sive Robotic Movement [26]

None Subjective Yes Between sounds No
Authors;
computer-based;
within-subjects
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Year Title Robot Measures
Statistical
Testing

Sound
Comparison

Multimodal
Comparison

Study Design

2017
Exploring the taxonomic and asso-
ciative link between emotion and
function for robot sound design [64]

None Subjective Yes Between sounds No
In-person;
computer-based;
within-subjects

2017
Good vibrations: How consequen-
tial sounds affect perception of
robotic arms [150]

youBot,
OWI

Subjective Yes
Between sounds,
including none

No
Online survey;
video-based;
within-subjects

2017
Making Noise Intentional: A Study
of Servo Sound Perception [98]

None Subjective Yes Between sounds No
Online survey;
sound-based;
mixed methods

2017
Sound Synthesis for Communicat-
ing Nonverbal Expressive Cues [29]

None Subjective No Between sounds No
Online survey;
sound-based;
within-subjects

2018
Effects of Robot Sound on Auditory
Localization in Human-Robot Col-
laboration [20]

Ava
Objective &
subjective

Yes
Between sounds,
including none

No
In-person;
experimental;
within-subjects

2018
Multimodal Expression of Artificial
Emotion in Social Robots Using
Color, Motion and Sound [82]

Custom
tabletop
robot

Subjective Yes Between sounds Yes
In-person;
computer-based;
within-subjects

2018

Perception of Mechanical Sounds
Inherent to Expressive Gestures
of a NAO Robot - Implications
for Movement Sonification of Hu-
manoids [36]

NAO Subjective Yes Between sounds Yes

Online survey;
video-based
AND audio-only;
within-subjects

2018
The Sound or Silence: Investigat-
ing the Influence of Robot Noise on
Proxemics [153]

Baxter
Objective &
subjective

Yes
Between sounds,
including none

No
In-person;
experimental;
between-subjects
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Year Title Robot Measures
Statistical
Testing

Sound
Comparison

Multimodal
Comparison

Study Design

2019
Augmenting the audio-based ex-
pression modality of a non-affective
robot [34]

Soft arm Subjective Yes Presence of sound No

In-person;
experimental;
between-subjects;
group

2019
Establishing Human-Robot Trust
throughMusic-Driven Robotic Emo-
tion Prosody and Gesture [132]

Shimi Subjective Yes Presence of sound No
In-person;
experimental;
mixed design

2019
Evaluating the Emotional Valence
of Affective Sounds for Child-Robot
Interaction [124]

NAO Subjective Yes Between sounds No
In-person;
experimental;
mixed design

2019
Impression Change on Nonverbal
Non-Humanoid Robot by Interac-
tion with Humanoid Robot [156]

Roomba,
NAO

Subjective Yes Presence of sound No
In-person;
experimental;
within-subjects

2019
Personalized Synthesis of Inten-
tional and Emotional Non-Verbal
Sounds for Social Robots [121]

BarBot Subjective Yes Between sounds No
In-person;
experimental;
within-subjects

2020

Conveying Robot State and Intent
Nonverbally in Military-Relevant
Situations: An Exploratory Sur-
vey [11]

Jackal Subjective No Between sounds Yes
In-person;
experimental;
within-subjects

2020

Correlation Analysis for Predictive
Models of Robot User’s Impression:
A Study on Visual Medium and Me-
chanical Noise [59]

NAO Subjective Yes Presence of sound No

In-person;
experimental;
OR online;
video-based;
between-subjects
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Year Title Robot Measures
Statistical
Testing

Sound
Comparison

Multimodal
Comparison

Study Design

2020
Effects of Auditory Cues on Human-
Robot Collaboration [103]

Robot arm Subjective Yes Presence of sound No
In-person;
experimental;
within-subjects

2020
Exploring emotion perception in
sonic HRI [77]

Pepper Subjective Yes Between sounds Yes
In-person;
experimental;
within-subjects

2020
Singing Robots: How Embodiment
Affects Emotional Responses to
Non-Linguistic Utterances [169]

ROVER Subjective Yes Between sounds Yes
In-person;
experimental;
within-subjects

2021

Bringing WALL-E out of the Silver
Screen: Understanding How Trans-
formative Robot Sound Affects Hu-
man Perception [180]

Cozmo, NAO,
TurtleBot,
UR5e, Baxter

Subjective Yes Presence of sound Yes
Online survey;
video-based;
within-subjects

2021

Comparing a Robotic Storyteller
versus Audio Book with Integration
of Sound Effects and Background
Music [143]

NAO Subjective Yes Presence of sound Yes
Online survey;
video-based;
between-subjects

2021
Emotion Musical Prosody for
Robotic Groups and Entitativ-
ity [131]

xArm Subjective Yes
Between sounds,
including none

No
Online survey;
video-based;
between-subjects

2021
Exploring Consequential Robot
Sound: Should We Make Robots
Quiet and Kawaii-et? [178]

UR5e Subjective Yes Between sounds Yes
Online survey;
video-based;
within-subjects
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Year Title Robot Measures
Statistical
Testing

Sound
Comparison

Multimodal
Comparison

Study Design

2022

Perceptual Evaluation of Blended
Sonification of Mechanical Robot
Sounds Produced by Emotionally
Expressive Gestures: Augmenting
Consequential Sounds to Improve
Non-verbal Robot Communica-
tion [35]

NAO Subjective Yes
Between sounds,
including none

No

In-person;
experimental;
OR online;
video-based;
within-subjects

Table 3. Articles that contained human-subjects studies that included created sound as an independent variable, sorted first by year of publication and second by title.
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The systematic review contained a total 45 articles with studies on created robot sound. Of the 45 articles, a majority
held studies in-person (76%) using robots in a laboratory experiment setting (60%). A variety of robots have been used
in the studies, including humanoid robots such as NAO and Pepper, robot arms such as the UR5e, wheeled mobile
robots such as Ava and TurtleBot, tabletop robots such as Cozmo, animal robots such as AIBO, and a custom soft robot
arm. NAO was the most popular robot and was used in 29% of studies. Study designs mainly compared the presence
of sound with no sound conditions (in 24% of articles), different sound designs (47%), or both presence and different
designs (27%); two (4%) evaluated sounds in a case study-like way rather than a comparative design. Within-subjects
study designs were employed in 76% of the articles, between-subjects designs 22%, and mixed methods designs 9%. Most
articles (84%) have applied statistical tests to their measures, which have mainly been subjective (in 82% of articles).
Some articles have employed both subjective and objective measures (18%) in their studies, while a few articles have
used exclusively objective measures (7%).

Measures have varied greatly between studies. Subjective measures have frequently included valence and energetic-
ness (arousal) from the circumplex model of affect [125], measured using unvalidated questionnaires, AffectButton [14],
and the self-assessment manikin (SAM) [12]; general social attributes surveys such as the Godspeed survey, which
measures anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety [5], as well as the Robotic
Social Attributes Scale (RoSAS), which measures social warmth, competence, and how discomforting a robot is [19];
association with emotions, such as happy, sad, and angry; and preference, usually between sounds or between sound
and no sound conditions. Participant-focused measures included the NASA Task Load Index (NASA-TLX) [49], mood,
stress, in addition to experience with science, technology, engineering, and mathematics (STEM), electronics, computers,
robots in the media, and music. Objective measures have focused around task accuracy and duration. In some studies
focused on non-task interactions, reaction time and response type to the robot (e.g., offering to help) were recorded.

Articles have made studied sounds available through multimedia attachments, embedded sound files, and web
repositories. However, not all studies made the robot sounds available, and some sounds have become unavailable due
to link rot. The incomplete availability of studied sounds has consequences for the longevity of findings in nonverbal
robot sound creation. Similarly, not all articles explained sound recording and playback methods, which may create
differences, even with identical sound files. We recommend including sounds with archival methods such as multimedia
attachments, carefully considering the frequency response of recording and playback methods, and reporting the
recording and playback methods used.

4 DISCUSSION

Our exploration of the state and trajectory of the field revealed opportunities in nonverbal robot sound, especially
nonverbal robot sound creation. Growth in recent research helps to assert the usefulness and potential of nonverbal robot
sound, but many questions remain. For example, how can sound perception be integrated into multimodal perception
systems? How can new sounds be integrated into sound source recognition systems? What makes a good consequential
robot sound? Transformative? Emotional? Functional? What improvements can be made to robot musicians? Below, we
identify research questions of particular interest to us that have been relatively lightly investigated, even within this
young and growing research field.

4.1 Paths for Future Research

Consequential robot sound is a ubiquitous feature of human-robot interaction, but few of the reviewed articles
investigated consequential sound. These investigations face additional difficulties, as consequential sound inherently
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corresponds the physical design of the robot, which may be difficult to change, as well as confounding variables like the
speed of motion. While changing consequential robot sound requires significant engineering effort, answering some of
the many questions revolving around consequential robot sound may benefit all robots.

Open systems and tools may also provide widespread benefits to the nonverbal robot sound field. The reviewed
articles included several tools: HARK, which was made open source and is currently maintained [63, 106, 172]), AUROS,
which was made open source but is no longer maintained [38, 154], and other tools that were not made publicly
available. Common tools can enable more complex investigations of sound, such as through replication and extension
of prior work. For instance, in sound creation, sound synthesizers can differ in output sounds even when using similar
techniques. We encourage the development of open systems and tools as research contributions such as in the case of
our emergent SonifyIt work [179].

In a similar vein, interdisciplinary collaboration with professional musicians and sound designers may improve the
complexity and quality of robot sound creation. Work towards improving understanding of the collaborative design
process through experience or experimentation may provide valuable research contributions. Mature methods for
successful collaboration could allow for broader implementation of research findings in nonverbal robot sound creation
on robots, as most roboticists do not also have expertise in sound design.

Lastly, studies on nonverbal robot sound creation often have weaknesses in external validity common to short-term
studies in controlled environments. Novelty effects may confound results in short-term robot sound studies, and
in real-world environments, robot sound must compete with ambient sounds and travel through different acoustic
environments. More in-the-wild and longitudinal study designs can strengthen our understanding of how robot sounds
perform in the real world.

4.2 Strengths & Limitations of This Review

This systematic review aggregates more than a quarter century of research, synthesizing 148 articles into new taxonomies
for nonverbal robot sound. The strengths of this work include the updated taxonomies of form and function, which
carefully integrate prior taxonomies found in the reviewed articles and adjacent fields with best practice scientific
communication principles so that researchers from the many disciplines that contribute to nonverbal robot sound may
more easily find and read relevant articles. Furthermore, the analysis of study methods complements the analysis and
findings in prior work for an updated and broader understanding of nonverbal robot sound creation, in addition to
revealing gaps in where and how robot sound has historically been deployed and studied.

We also note the limitations of this work, firstly that the review process did not capture all relevant articles, including
recent and highly relevant papers such as by Zahray et al. [177] and Robinson et al. [123]. We hypothesize that the
currently lack of common terms and multi-step review process, which necessarily reduced the search space from
thousands to hundreds of articles, led to these omissions. While the absence of the aforementioned works do not change
our findings, we include them here for the readers’ benefit. A second limitation is that the value of introducing new
taxonomies and terms rests on how widespread the taxonomies and terms become; rarely-used terms may also become
jargon.

4.3 Conclusion

In this article, we proposed new taxonomies for the form and function of sound in human-robot interaction based on
the results of a systematic review. These taxonomies will improve the accessibility of the field, making it easier for
researchers to share and find related literature. An updated survey of study methods for robot sound creation also
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reveals opportunities for future work. We highly recommend that researchers in nonverbal robot sound use our updated
taxonomies to make nonverbal sound more visible as an important mode of human-robot interaction.
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